Swenson College of Science and Engineering

Admission 182
College Honors 182
Academic Standing 183
Student Affairs Office 183
Baccalaureate Degrees 183
General Requirements 184
B.S. Requirements 184
B.S.Ch.E. Requirements 184
B.S.C.E. Requirements 184
B.S.E.C.E. Requirements 184
B.S.I.E. Requirements 184
B.S.M.E. Requirements 184
Departments 185
Aerospace Studies 185
Biology 185
Chemical Engineering 185
Chemistry and Biochemistry 185
Civil Engineering 185
Computer Science 186
Electrical and Computer Engineering 186
Geological Sciences 186
Mathematics and Statistics 186
Mechanical and Industrial Engineering 186
Physics 186
Collegiate Graduate Program 186
Master of Environmental Health and Safety 186
Pre-Professional Programs 188
Pre-Dentistry 188
Pre-Medicine 188
Pre-Optometry 188
Pre-Pharmacy 189
Pre-Veterinary Medicine 189
Pre-Engineering 189
Pre-Aerospace Engineering 190
Degree Programs 190
Aerospace Studies Minor Only 190
Astronomy Minor Only 191
Biochemical Engineering Minor Only 191
Biochemistry and Molecular Biology B.S. 191
Biology B.A. 192
Biology B.S. 193
Biological Minor 193
Cell and Molecular Biology B.S. 194
Chemical Engineering B.S.Ch.E. 194
Chemistry B.A. 196
Chemistry B.S. 196
Chemistry Minor 197
Civil Engineering B.S.C.E. 197
Computer Information Systems B.S. 198
Computer Information Systems Minor 199
Computer Science B.S. 199
Computer Science Minor 200
Computer Science Applied Minor Only 200
Electrical and Computer Engineering B.S.E.C.E. 201
Electrical and Computer Engineering Minor 202
Environmental Engineering Minor Only 202
Environmental Science B.S. 202
Environmental Science Minor 204
Geological Sciences B.A. 204
Geological Sciences B.S. 205
Geological Sciences Minor 206
Industrial Engineering B.S.I.E. 206
Mathematics B.S. 209
Mathematics Minor 210
Mechanical Engineering B.S.M.E. 210
Physics B.A. 212
Physics B.S. 213
Applied Physics B.S. 213
Physics Minor 214
Statistics and Actuarial Science B.S. 214
Swenson College of Science and Engineering

Dean: James Richl,
140 Engineering Building, 218-726-6397
Associate Dean: Timothy B. Holst,
140 Engineering Building, 218-726-7585
Associate Dean: Stanley Burns
140 Engineering Building, 218-726-7506

The Swenson College of Science and Engineering (SCSE) has a fourfold mission: to help each student develop a foundation for his or her career by learning the substance and methods of an academic discipline; to participate fully in the liberal education mission of the campus; to foster significant scholarly research; and to serve the well-being of the community, state, and region. The college offers students a broad range of curricula covering the natural sciences, mathematical sciences, engineering, and technology.

Each student is provided the opportunity to develop competence in a special field of knowledge by learning its principles and perspectives, mastering its methods, and acquiring much of its accumulated knowledge.

In addition to offering formal coursework, the college is committed to providing students with opportunities to learn through participation in research, honors programs, individual study, and special seminars. Such programs, which emphasize undergraduate education, are enhanced and complemented by high quality graduate programs. These graduate programs form an integral component of our commitment to scholarship. Several departments also offer graduate degrees through the Graduate School.

Admission

The college has no specific secondary school preparation requirements for admission beyond the preparation standards of the University of Minnesota. However, secondary school students contemplating a baccalaureate degree in a physical or biological science, mathematics, computer science, or engineering are strongly urged to complete a college preparatory program that includes four years (grades 9–12) each of English, mathematics, and science.

The engineering programs have specific college-level course requirements and minimum GPAs that must be satisfied before students can be admitted into the upper division (junior and senior level) program.

For general admission information, see the Policies and Procedures section of this catalog.

College Honors

A maximum of 15 percent of the graduating class may graduate with college honors. In SCSE the top 3 percent of the graduating class is designated summa cum laude, the next 5 percent magna cum laude, and the next 7 percent cum laude.

At the beginning of each year, the GPAs necessary to achieve these honors are posted in the SCSE Student Affairs Office, 140 Engineering Building. These GPAs are based on those of the previous spring semester’s graduating class. In addition, students receiving honors must have a coefficient of course completion of at least 90 percent. For more information, contact the Office of the Associate Dean, 140 Engineering Building.

Dean’s List of Academic Excellence

Each semester, SCSE students are recognized for high academic achievement by being placed on the SCSE Dean’s List of Academic Excellence. This honor is awarded to students who rank in the top 15 percent of the college based on their semester GPA. To be eligible, students must have completed at least 12 graded credits and have received no final grades of F, N, or I during that semester.

Honors Programs

The objective of the SCSE honors programs is to offer highly motivated students of superior ability a greater challenge than is available through the traditional curriculum. Honors opportunities provide for closer student-faculty relationships, emphasize writing and speaking skills, and offer active learning in the disciplinary and interdisciplinary components.
In the lower division, honors opportunities include seminars and special sections of lecture and lab courses. Students may participate in these by invitation or by consent of the instructor.

Honors opportunities in the upper division are available for students in all departments. Department honors candidates are selected on the basis of coursework completed and potential for independent work. Most departments require a research project.

More information about department honors is available through the departments.

Academic Standing

Good Academic Standing

SCSE requires that its students maintain a minimum cumulative GPA to be in good academic standing. For students who have attempted 20 or more credits, the minimum cumulative GPA is 2.00. Because some students have difficulty adjusting to the standards of a university education, students who have attempted fewer than 20 credits (at UMD or elsewhere) must maintain a minimum cumulative GPA of 1.80 to remain in good academic standing.

Probation

Students with a cumulative GPA lower than the level required for good academic standing are placed on academic probation. At the end of a semester on probation, the student will be returned to good academic standing if the cumulative GPA is at or above 2.00. Students also will be placed on probation if their semester GPA is less than 2.00 for two consecutive semesters, even if the cumulative GPA is above 2.00. To regain good standing, these students must achieve both a subsequent semester GPA of 2.00 and a cumulative GPA of 2.00.

Dismissal

If, after a semester of probation, a student fails to attain the required minimum GPA for good academic standing, the student is subject to dismissal. Dismissal decisions are made in the college office following fall and spring semester final exams. Dismissed students are notified immediately and their registration as a SCSE student for the next semester is canceled. Students who fail to attain the minimum GPA but who are making academic progress may be granted an additional semester of probation at the discretion of the college.

Readmission

Students who have been academically dismissed from SCSE must present evidence of improved academic capability to justify readmission. Petition forms for readmission and information concerning academic standing are available in the SCSE Student Affairs Office, 140 Engineering Building.

Student Affairs Office

Information on academic matters, including academic standing; admission; advising; academic programs; change of major, college, or advisor; grievance and appeals procedures; honors programs; undergraduate research; student clubs; and tutoring is available in the SCSE Student Affairs Office, 140 Engineering Building.

Baccalaureate Degrees

SCSE offers the bachelor of science (B.S.), bachelor of science in chemical engineering (B.S.Ch.E.), bachelor of science in civil engineering (B.S.C.E.), bachelor of science in electrical and computer engineering (B.S.E.C.E.), bachelor of science in industrial engineering (B.S.I.E.), and bachelor of science in mechanical engineering (B.S.M.E.) degrees.

B.S. Majors

- Biochemistry and molecular biology
- Biology
- Cell and molecular biology
- Chemistry
- Computer information systems
- Computer science
- Environmental science
- Geological sciences
- Mathematics
- Physics
- Applied physics
- Statistics and actuarial science

Minors

- Aerospace studies (minor only)
- Astronomy (minor only)
- Biochemical engineering (minor only)
- Biology
- Chemistry
- Computer information systems
- Computer science
- Computer science, applied (minor only)
- Electrical and computer engineering
- Environmental science
- Environmental engineering (minor only)
- Geological sciences
- Mathematics
- Physics

For other minors available to students pursuing a bachelor of science degree, see the Labovitz School of Business and Economics, School of Fine Arts, College of Education and Human Service Professions, and College of Liberal Arts sections of this catalog.
General Requirements
- Completion of at least 30 degree credits at UMD.
- Completion at UMD of at least 20 of the last 30 degree credits immediately before graduation.
- Compliance with general regulations governing granting of degrees.

B.S. Requirements
- Completion of at least 120 credits.
- Completion of UMD liberal education requirements. (See the Liberal Education Program section of this catalog.)
- Completion of a major for the bachelor of science degree.
- Completion of a minor or second major in a different program. For students completing two or more majors a minor is not required. If the majors are for different degrees (e.g. a B.S. and a B.A.) the majors must be in different programs and students must complete requirements for both degrees. Students majoring in environmental science are not required to complete a minor.
- A 2.00 minimum GPA in the major, including supporting courses, and a 2.00 minimum GPA in the minor including supporting courses.
- A 2.00 minimum GPA in all work attempted at UMD. A minimum GPA in all work including transfer credits.
- Successful completion of 75 percent of all work attempted.

B.S.Ch.E. Requirements
- Completion of at least 130 credits.
- Completion of UMD liberal education requirements. (See the Liberal Education Program section of this catalog.)
- Admission to the upper division program of the chemical engineering major. Application for admission must be filed with the department upon completion of lower division requirements. Admission to the upper division program is competitive and granted on a space-available basis.
- Completion of the chemical engineering major.
- A 2.00 minimum GPA for all courses taken in the major, including required supporting courses. The 2.00 requirement applies to all courses in the major taken at UMD calculated separately and to all courses in the major when transfer credits are included.
- A 2.00 minimum GPA in all work attempted at UMD; a 2.00 minimum GPA in all work including transfer credits.
- Successful completion of 75 percent of all work attempted.

B.S.C.E. Requirements
- Completion of at least 130 credits.
- Completion of UMD liberal education requirements. (See the Liberal Education Program section of this catalog.)
- Admission to the upper division program of the civil engineering major. Application for admission must be filed with the department upon completion of lower division requirements. Admission to the upper division program is competitive and granted on a space-available basis. See civil engineering program details for minimum GPA requirements for admission to upper division.
- Completion of the civil engineering major.
- Grades of C- or better in all major courses taken at UMD and all transferred major courses.
- A 2.00 minimum GPA for all courses taken in the civil engineering major, including required supporting courses. The 2.00 requirement applies to all courses in the major taken at UMD calculated separately and to all courses in the major when transfer credits are included.
- A 2.00 minimum GPA in all work attempted at UMD; a 2.00 minimum GPA in all work including transfer credits.
- Successful completion of 75 percent of all work attempted.

B.S.E.C.E. Requirements
- Completion of at least 128 credits.
- Completion of UMD liberal education requirements. (See the Liberal Education Program section of this catalog.)
- Admission to the upper division program of the electrical and computer engineering major. Application for admission must be filed with the department upon completion of lower division requirements. Admission to the upper division program is competitive and granted on a space-available basis.
- Completion of the electrical and computer engineering major.
- A 2.00 minimum GPA for all courses taken in the major, including required supporting courses. The 2.00 requirement applies to all courses in the major taken at UMD calculated separately and to all courses in the major when transfer credits are included.
- A 2.00 minimum GPA in all work attempted at UMD; a 2.00 minimum GPA in all work including transfer credits.
- Successful completion of 75 percent of all work attempted.

B.S.I.E. Requirements
- Completion of at least 128 credits.
- Completion of UMD liberal education requirements. See the Liberal Education Program section of this catalog.
- Admission to the upper division program of the industrial engineering major. Application for admission must be filed with the department upon completion of lower division requirements. Admission to the upper division program is competitive and granted on a space-available basis.
- Completion of the industrial engineering major.
- Grades of C- or better in all major courses taken at UMD. Grades of C or better in all transferred major courses.
- A 2.00 minimum GPA for all courses taken in the industrial engineering major, including required supporting courses. The 2.00 requirement applies to all courses in the major taken at UMD calculated separately and to all courses in the major when transfer credits are included.
- A 2.00 minimum GPA in all work attempted at UMD; a 2.00 minimum GPA in all work including transfer credits.
- Successful completion of 75 percent of all work attempted.

B.S.M.E. Requirements
- Completion of at least 128 credits.
- Completion of UMD liberal education requirements. See the Liberal Education Program section of this catalog.
Aerospace Studies

E-mail: air@d.umn.edu
Web site: www.d.umn.edu/air

Professor: Lieutenant Colonel Al Chromy; Assistant
Professors: Captain Colleen Hollis, Major Jason Jaros; Teaching
Specialists: S.Sgt. Ayasha Barno, T.Sgt. Chad Maniekee

The Aerospace Studies Department offers a curriculum to all students looking for insight into the mission, organization, and operation of the United States Air Force. Students study Air Force history, leadership, management, and professionalism as well as U.S. foreign and defense policy. The department offers most of the courses required for an aerospace studies minor. Students have the opportunity to participate in the Air Force Reserve Officer Training Corps (AFROTC) and prepare for an Air Force commission as soon as they earn their academic degrees. Real-world application of organizational leadership and management skills is the backbone of their professional development. Scholarships covering the cost of education and a monthly stipend are available on a merit basis.

Biology

E-mail: biol@d.umn.edu
Web site: www.d.umn.edu/biology

Biology is one of the largest programs at UMD, with more than 600 undergraduate majors, more than 30 active graduate students, and 20 full-time faculty members. The department offers bachelor of science degrees in biology and cell and molecular biology, and master of science degrees with concentrations in botany, zoology, environmental biology, cellular, and physiological biology. In addition, the department provides pre-professional preparation for students interested in dentistry, fishery and wildlife management, medicine, optometry, pharmacy, and veterinary medicine. It also serves students seeking bachelor of arts degrees in biology through the College of Liberal Arts (CLA) and those seeking bachelor of applied science (B.A.Sc.) degrees in life science teaching through the College of Education and Human Service Professions. The faculty is actively involved in research supported by more than $8 million in external grants. This funding allows the department to offer all qualified undergraduate students the opportunity to participate in faculty research.

Chemical Engineering

E-mail: che@d.umn.edu
Web site: www.d.umn.edu/che

Professors: Richard A. Davis (department head), A. Rashid Hasan; Associate Professors: Keith Lodge, Steven Sternberg; Assistant Professors: Michael Rother, Gregory Rutkowski; Instructor: Carol Horabik

The Department of Chemical Engineering offers students a high quality educational experience that includes engineering theory, application, experimentation, and design. It is dedicated to achieving recognition for excellence in engineering education by continually improving its program, contributing to the body of knowledge through research, providing an environment for professional development, and serving the profession.

Chemistry and Biochemistry

E-mail: chem@d.umn.edu
Web site: www.d.umn.edu/chem

Professors: Robert M. Carlson, Lester R. Drewes (MED), John F. Evans, John E. Fulkrod, Vincent Magnuson, Donald P. Poe, Joseph R. Prohaska (MED), James P. Riehl, Bilin P. Tsai, Kendall B. Wallace (MED), Viktor V. Zhdankin; Associate Professors: Benjamin L. Clarke (MED), Thomas E. Huntley (MED), Paul Kiprof, Venkatram Mereddy, Elizabeth Minor, Viktor Nemykin, Paul D. Siders, Josef Wernic; Assistant Professors: Steven Berry, Robert Cormier (MED), Peter Grundt, Anne Hindeliter, Joseph L. Johnson, Sangeeta Mereddy, Jon N. Rumbley; Instructors: Brian Gute, Patricia R. Splan

The Department of Chemistry and Biochemistry provides classroom and laboratory learning opportunities and research experiences across the discipline to meet the needs of students in engineering, liberal arts, and pre-professional programs, as well as those of students who wish to pursue careers or graduate studies in chemistry or related disciplines.

Civil Engineering

E-mail: civileng@d.umn.edu
Web site: www.d.umn.edu/civileng

Professors: Eil Kwon, Andrea Schokker (department head); Associate Professor: Carlos Carranza-Torres

The Department of Civil Engineering prepares graduates for professional practice and graduate study through a program firmly based in strong technical skills, fundamentals, hands-on learning, and professionalism. The Civil Engineering program offers four areas of specialty: geotechnical engineering, structural engineering, transportation systems, and water resources.
The Department of Computer Science provides instruction and research experiences for undergraduate and graduate students in preparation for careers in industry or for continuing on in graduate school. The department also provides instruction in computer literacy and software design for non-major students as part of a liberal education.

The goals of the Department of Electrical and Computer Engineering are to provide high quality educational opportunities in electrical and computer engineering for students of the region by delivering a program with a strong hands-on laboratory and design component in conjunction with a thorough foundation in theory; and to provide students with the tools and skills to be major life-long contributors to their professions and society as a whole.

The Department of Computer Science offers three undergraduate degree programs in mathematics and statistics/actuarial science. These programs prepare students for careers in business, industry, government, and teaching, as well as for graduate studies in mathematics, statistics, and bioinformatics.

The Department of Mechanical and Industrial Engineering (MIE) will be internationally recognized as the premier engineering department in the Great Lakes Region for its high quality undergraduate education, applied master’s level programs in environmental health and safety and engineering management, and integrated outreach activities in regional economic development, international partnerships, and applied research, thus enabling the growth of our students, faculty, alumni, industry, and economy.

The Department of Physics offers two bachelor of science degrees that provide professional preparation in pure and applied physics as well as a liberal arts degree (B.A.). Students participate in research focused primarily on theoretical physics, instrumentation, experimental solid state and high energy physics, and physical oceanography. The department also offers courses required for such professional and pre-professional programs as engineering and medicine.

The Department of Geological Sciences offers three undergraduate programs: a bachelor of science program providing training for a career as a professional geologist, which usually requires graduate study; a liberal arts bachelor of arts program through the College of Liberal Arts; and a program for those interested in teaching earth sciences through the College of Education and Human Service Professions.

Mathematics and Statistics
E-mail: math@d.umn.edu
Web site: www.d.umn.edu/math
Professors: Dalibor Fonseca, Joseph A. Gallian, Richard F. Green, Barry R. James (department head), Kang L. James, Zhuangyi Liu, Ronald R. Regal, Harlan W. Stech; Associate Professors: Guihua Fei, John R. Greene, Carmen Latterell, Kathryn E. Lenz, Robert L. McFarland, Bruce B. Peckman, Yongchen Qi, Steven A. Trogdon; Assistant Professors: Diana Colt, Marshall Hampton; Instructors: Minggian Duan, Deanna L. Green, Anna C. Jacobson, Karl K. Kruppstadt, Chad Pierson, Angela M. Sharp, Laura Zimmerman

Mechanical and Industrial Engineering
E-mail: mie@d.umn.edu
Web site: www.d.umn.edu/mie
Professors: Mark A. Fugelsjo, Richard R. Lindeke; Associate Professors: Ryan G. Rosandich (department head), Emmanuel U. Enemuoh, Daniel N. Pope; Assistant Professors: Seraphin C. Abou, Robert Feyen, Todd Loushine; Instructors: Jacob Dryke, Chinweike Esenou, David Keranen, Hossain Khorooosi, Heidi Zierden

The Department of Physics offers two bachelor of science degrees that provide professional preparation in pure and applied physics as well as a liberal arts degree (B.A.). Students participate in research focused primarily on theoretical physics, instrumentation, experimental solid state and high energy physics, and physical oceanography. The department also offers courses required for such professional and pre-professional programs as engineering and medicine.

Collegiate Graduate Program
Master of Environmental Health and Safety
Assistant Professors: Seraphin C. Abou, Robert Feyen, Todd Loushine
The Master of Environmental Health and Safety (M.E.H.S.) program prepares graduates for professional careers in environmental health and safety, encompassing occupational safety, industrial hygiene, ergonomics, risk management, and environmental health. The coursework stresses analysis of work systems to identify occupational safety and health issues, utilize relevant problem-solving and decision-making techniques, and apply established principles and practices for eliminating, reducing, or controlling hazards that might otherwise lead to accidents, injuries and fatalities in the workplace.
Admission Requirements

By the start of the term for which they are applying, all applicants must have:

- A baccalaureate degree from an accredited college or university
- Taken the General Test of the Graduate Record Examination (GRE)
- A grade of C or better in the following prerequisite college coursework:
 - introductory chemistry with a lab component
 - introductory calculus
 - introductory statistics

Preferred applicants will have:

- A baccalaureate degree in science, engineering, or other E.H.S.-related field
- A cumulative GPA of 3.00 or better
- Work experience related to E.H.S.
- Obtained a minimum combined score of 1000 on the verbal and quantitative sections of the GRE and a 4.0 on the analytical writing section
- Completed the following college coursework:
 - introductory physics
 - human biology/physiology

International applicants must have obtained a minimum score of 550 on the TOEFL.

Select candidates with either a cumulative GPA between 2.50 and 3.00 or a deficiency in their prerequisite coursework may be offered a probationary, one-semester admission. The probationary period is intended to allow these students to demonstrate their potential for successfully completing the degree program. Students admitted on probation must take two core courses; if they obtain an overall GPA of 3.00 or better, they will be offered full admission and allowed to continue taking courses in the program.

Application Procedure

Information and application materials are available from the M.E.H.S. program office, 229 Voss-Kovach Hall. All applicants must submit the following items as part of their complete application package:

- Application form (M.E.H.S. program)
- Official transcript(s) indicating completion of a baccalaureate degree program
- grades obtained in the prerequisite courses
- Resume/CV
- Three letters of recommendation
- GRE General Test scores
- TOEFL score (international students only)
- Answers to three to five questions on E.H.S.-related scenarios (provided by the M.E.H.S. program office)

An application package must be completed and received by the M.E.H.S. program office no less than two months prior to the term in which the student wishes to enroll. Packages that are completed or received less than two months prior to the start of a term will be reviewed for admission effective the following term. Applicants are also responsible for obtaining information on and following any University-level admission deadlines and requirements.

Degree Requirements

Requirements for the M.E.H.S. degree include:

- 27 course credits in the M.E.H.S. program
- A cumulative GPA of 3.00 or better at all times
- 3 cooperative internship credits, obtained only once an approved Plan B Masters thesis is submitted to the program office within 12 months of completing the 27 course credits (unless a formal extension is granted)
- A minimum of two semesters for the residence requirement

Required Courses

Core (18 credits)

SAFE 6002—Regulatory Standards and Hazard Control (4 cr)
SAFE 6011—System Safety and Loss Control Techniques (4 cr)
SAFE 6012—Risk Management and Workers’ Compensation (4 cr)
SAFE 6101—Principles of Industrial Hygiene (3 cr)
SAFE 6302—Occupational Ergonomics and Injury Management (3 cr)

Electives (9 credits)

EMGT 5110—Management of Engineers and Technology (3 cr)
EMGT 5120—Advanced Project Management (3 cr)
IE 5315—Organizational Control Methods (3 cr)
IE 5325—Advanced Engineering Economics (3 cr)
SAFE 6051—Construction Safety (3 cr)
SAFE 6102—Advanced Industrial Hygiene (3 cr)
SAFE 6201—Fire Prevention and Emergency Preparedness (3 cr)
SAFE 6211—Transportation Safety (3 cr)
SAFE 6212—Noise Control Engineering (3 cr)
SAFE 6213—Principles of Ventilation and IAQ (3 cr)
SAFE 6291—Independent Study in Industrial Safety (1–3 cr)
SAFE 6295—Special Topics (1–3 cr)
SAFE 6301—Occupational Biomechanics (3 cr)
SAFE 6401—Environmental Safety and Legal Implications (3 cr)
SAFE 6821—Organization and Administration of Safety Programs (3 cr)

Internship (3 credits)

SAFE 6997—Cooperative Internship (3 cr)

Upon completion of program coursework on campus, students are required to complete a substantial EHS-related project for an industrial, governmental or other organization that either has an established safety program or is implementing one. Students cannot receive the M.E.H.S. degree until the program office receives the final project report (a Plan B Masters thesis).

Grading System

The M.E.H.S. program uses two grading systems: A-B-C-D-F and S-N. The course syllabus identifies the grading system used for each course. The temporary grade I (incomplete) is assigned only when a student has made an agreement with the instructor to complete the requirements for a course before the instructor submits final grades for a semester. An I remains in effect for nine weeks after the beginning of the next semester during which the student is in attendance, unless a different time period has been arranged between the student and instructor. At the end of this period, the I is changed to an N or F unless the instructor has submitted a change of grade or has agreed to an extension of the incomplete. If an extension is permitted, it is the responsibility of the student to get an Extension of Incomplete form, the instructor’s signature, and submit the form to the program office before the deadline.
Any student with three or more incompletes must fulfill the terms of the agreements described above before they will be allowed to register for further courses in the program. Retaking courses is strongly discouraged, although allowed if the student obtains permission from both his or her adviser and the course instructor. All registrations for a retaken course will remain on the student’s record.

Pre-Professional Programs

The college offers programs and special advising services for students who plan to enter professional schools. These programs offer preparation in pre-professional coursework as well as a broad background in mathematics, biological and physical sciences, humanities, and social science.

Some professional requirements can be fulfilled in two or three years; others take four years with the completion of a baccalaureate degree. In any case, students are encouraged to avoid narrow specialization during their undergraduate years.

The basic programs are described below. Variations in a curriculum may be arranged upon agreement among the student, pre-professional adviser, and admissions office of the pertinent professional school. Students are encouraged to seek admissions details from the professional school of their choice, see their advisers regularly, learn of visits by representatives of various professional schools, and receive help with course planning. UMD also offers preparatory courses for other health sciences professions.

Pre-Dentistry

Admission to the University of Minnesota’s School of Dentistry requires at least three years of college, including the courses listed below. It is also strongly recommended that students complete additional credits to achieve as broad and liberal an education as possible. About 80 percent of successful dental school candidates have a baccalaureate degree.

- **BIOL 1011**—General Biology I (5 cr)
- **BIOL 1012**—General Biology II (5 cr)
- **CHEM 1151**—General Chemistry I (5 cr)
- **CHEM 1152**—General Chemistry II (5 cr)
- **CHEM 2541**—Organic Chemistry I (3 cr)
- **CHEM 2542**—Organic Chemistry II (3 cr)
- **CHEM 2543**—Organic Chemistry I Lab (1 cr)
- **CHEM 2544**—Organic Chemistry II Lab (1 cr)
- **CHEM 3322**—Biochemistry (3 cr)
- **MATH 1250**—Precalculus Analysis (4 cr)
- **PHYS 1001**—Introduction to Physics I (5 cr)
- **PHYS 1002**—Introduction to Physics II (5 cr)

* Courses that may be used to fulfill UMD liberal education program requirements.

Additional required or recommended courses may include cell biology, genetics, humanities, literature, microbiology, quantitative analysis, and social sciences.

The Medical College Admission Test (MCAT) is usually taken in the spring of the junior year or, at the latest, in the summer before the senior year. Students are advised to apply to medical school as early as possible after June 15 of the year preceding anticipated fall entrance. Most application deadlines are between October 1 and November 15.

More information about admission requirements for all medical schools can be found in Medical School Admission Requirements published by the American Association of Medical Colleges.

Pre-Optometry

Admission requirements for optometry colleges vary considerably. The following program satisfies pre-optometry requirements for most of these colleges. It is suggested that students begin application procedures during their third year of college study. Applicants are selected on a competitive basis and academic work is weighed heavily. In addition to GPA, admission is based on Optometry College Admission Test (OCAT) scores, letters of recommendation, volunteer or work experience in optometry, interview evaluations, and other supporting documents.

- **BIOL 1011**—General Biology I (5 cr)
- **BIOL 1012**—General Biology II (5 cr)
Pre-Professional Programs

Pre-Pharmacy

Students wishing to enter the four-year doctor of pharmacy (Pharm.D.) program in the College of Pharmacy on the Duluth or Minneapolis campus may complete their prerequisites with the coursework listed below. The Pharmacy College Admission Test (PCAT) is also required. Although admission to pharmacy is possible after three years of undergraduate study, it is recommended that students pursue a baccalaureate degree while preparing for admission to the College of Pharmacy.

BIOL 101*—General Biology I (5 cr)
BIOL 102—General Biology II (5 cr)
BIOL 2769—Human Anatomy (4 cr)
BIOL 2101—Cell Biology (3 cr)
BIOL 4501—General Microbiology (4 cr)
CHEM 115*—General Chemistry I (5 cr)
CHEM 1152—General Chemistry II (5 cr)
CHEM 2541—Organic Chemistry I (3 cr)
CHEM 2543—Organic Chemistry I Lab (1 cr)
CHEM 2544—Organic Chemistry II (3 cr)
CHEM 2545—Organic Chemistry II Lab (1 cr)
CHEM 322—Biochemistry (3 cr)
MATH 1296*—Calculus I (5 cr)
PHSL 301—General Physiology (4 cr)
PHYS 1001*—Introduction to Physics I (5 cr)
PHYS 1002—Introduction to Physics II (5 cr)
PSY 1003*—General Psychology (4 cr)
STAT 2411*—Statistical Methods (3 cr)
WRIT 1120*—College Writing (3 cr)
WRIT 3xxx—Advanced Writing (3 cr)

* Courses that may be used to fulfill UMD liberal education program requirements.

Additional required or recommended courses may include anatomy, biochemistry, communications, computer science, genetics, humanities, microbiology, physiology, and social sciences. Students should read and complete the specific admission requirements of the optometry school in which they are interested.

Pre-Engineering

Students who are undecided on the specific engineering program they would like to pursue may be declared pre-engineering students. During their freshman year they should select a specific program from UMD’s chemical, civil, electrical and computer, industrial, or mechanical engineering programs, or from UMD’s pre-aerospace engineering programs, which transfer to the Institute of Technology (IT) on the Minneapolis campus.

Students are encouraged to select their engineering program as early as possible because programs commonly share only mathematics, physics, and college writing courses in the first year. Other required courses, such as chemistry, computer programming, economics, and introductory engineering courses differ between engineering programs even in the first
Recommended Lower Division Courses for Students Who Wish to Transfer to IT or Another University

The course recommendations below have been designed to closely match the first two years at the University of Minnesota's Institute of Technology (IT). Students who wish to transfer to another engineering school can, with the aid of their engineering adviser, plan a program fulfilling the basic requirements for the first two years. Programs in engineering specialties at other schools normally do not differ markedly from those listed below; they usually concentrate on mathematics and the basic sciences.

Pre-Aerospace Engineering

CHEM 1151*—General Chemistry I (5 cr)
WRIT 1120*—College Writing (3 cr)
CS 1511*—Computer Science I (5 cr)
ENGR 2015—Statics (3 cr)
ENGR 2016—Mechanics of Materials (3 cr)
ENGR 2026—Dynamics (3 cr)
ENGR 2110—Introduction to Material Science for Engineers (3 cr)
MATH 1296*—Calculus I (5 cr)
MATH 1297—Calculus II (5 cr)
MATH 3280—Differential Equations With Linear Algebra (4 cr)
MATH 3298—Calculus III (4 cr)
PHYS 2011*—General Physics I (4 cr)
PHYS 2012—General Physics II (4 cr)
PHYS 2021—Relativity and Quantum Physics (4 cr)

Liberal education courses that complete Minnesota Transfer Curriculum or meet requirements of transfer institution

Degree Programs

Aerospace Studies Minor Only

Aerospace Studies

Required credits in this minor: 32 to 41.

The Air Force Reserve Officer Training Corps (AFROTC) is a college-level educational program that gives students the opportunity to become Air Force officers while completing their degrees. Any student may enroll in aerospace studies courses. AFROTC offers post-collegiate opportunities in more than 100 career specialties. Air Force officers are challenged with organizational responsibilities and experiences not often available to new college graduates. This program is for students who want to challenge themselves as Air Force leaders and managers while serving their country in a professional, high-tech environment.

Active-duty Air Force officers provide a curriculum that gives students insight into the mission, organization, and operation of the U.S. Air Force. Students study Air Force history, leadership, management, professionalism, and U.S. foreign policy and its relationship to defense policy. Scholarships are available on a competitive basis. High school seniors and college students can compete for five-, four-, three-, two (and sometimes one-) year scholarships that cover tuition, fees, and book expenses. Participants may qualify to receive a tax-free allowance for each month in school.

The aerospace studies minor provides preparation in areas studied by most officers early in their service careers. The minor increases future officers’ performance potential in two areas in which all officers must eventually develop competence: communication skills and international affairs.

Minor Requirements

Lower Division (10–14 cr)

AIR 100 or AIR 1000—AFROTC Leadership Laboratory (0–1 cr) must be taken 4 times.
AIR 1101—Foundations of the U.S. Air Force (1 cr)
AIR 1102—Foundations of the U.S. Air Force (1 cr)
AIR 2101—Evolution of the U.S. Air Force Air and Space Power (1 cr)
AIR 2102—Evolution of the U.S. Air Force Air and Space Power (1 cr)
AIR 100—AFROTC GMC Leadership Laboratory (0 cr)
or AIR 1000—AFROTC GMC Lead Lab (1 cr)
COMM 1112—Public Speaking, LE CAT3 (3 cr)
or COMM 1222—Interpersonal Communication, LECD CAT03 (3 cr)
Course requiring mathematical reasoning

Upper Division (19–23 cr)

AIR 3000 (1 cr) or AIR 3001 (2 cr)—AFROTC Leadership Laboratory must be taken 4 times (4–8 cr)
AIR 3101—Air Force Leadership Studies (3 cr)
AIR 3102—Air Force Leadership Studies (3 cr)
AIR 4101—National Security Affairs, Preparation for Active Duty (3 cr)
AIR 4102—National Security Affairs, Preparation for Active Duty (3 cr)
Advanced or technical writing course
AIR 3000—AFROTC POC Leadership Laboratory (1 cr)
or AIR 3001—AFROTC POC Lead Lab (2 cr)
Astronomy Minor Only

Geological Sciences

Physics

Required credits in this minor: 34.

The astronomy minor enhances students’ understanding of the formation, structure, and evolution of the Universe while providing a sound foundation for professional programs in the sciences. The minor program covers a wide range of topics in general astronomy, comparative planetology, stellar dynamics, astrophysics, cosmology, and techniques of astronomical observation and analysis.

Minor Requirements

Astronomy Required Courses

- AST 1040—Introductory Astronomy, LE CAT5 (3 cr)
- AST 4110—Observational Astronomy (3 cr)
- PHYS 2011—General Physics I, LE CAT4 (4 cr)
- PHYS 2012—General Physics II (4 cr)
- PHYS 2021—Relativity and Quantum Physics (4 cr)
- PHYS 3561—Astrophysics (3 cr)
- GEOL 2120—The Earth’s Dynamic Interior (3 cr)
- or AST 2040—The Solar System (3 cr)

Required Courses From Other Programs

- MATH 1296—Calculus I, LE CAT2 (5 cr)
- MATH 1297—Calculus II (5 cr)

Biochemical Engineering Minor Only

Chemical Engineering

Required credits in this minor: 46 to 48.

Significant advances in the biological sciences and engineering have had a dramatic effect on the environmental, chemical, and health care industries. Chemical engineering programs have become more diversified to include curriculum in biochemical engineering. The biochemical engineering minor provides students with additional training in this growing field beyond their traditional coursework. Students will gain the basic knowledge of the biological sciences and design as applied to bioreactor engineering and downstream processing.

The influence of the biological sciences in all academic disciplines within the sciences and engineering continues to expand. Any student may pursue a minor in biochemical engineering.

Minor Requirements

Biochemical Engineering Courses

- BIOL 1011—General Biology I, LE CAT4 (5 cr)
- CHE 2111—Material and Energy Balances (3 cr)
- CHE 4601—Biochemical Engineering (3 cr)
- CHE 4602—Bioseparations (3 cr)
- CHEM 2541—Organic Chemistry I (3 cr)
- CHEM 2543—Organic Chemistry Laboratory (1 cr)
- CHEM 2542—Organic Chemistry II (3 cr)
- CHEM 2544—Organic Chemistry II Laboratory (1 cr)
- MATH 1296—Calculus I, LE CAT2 (5 cr)
- MATH 1297—Calculus II (5 cr)
- CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
- or CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
- CHEM 1152—General Chemistry II (5 cr)
- or CHEM 1162—Honors: General Chemistry II, H (5 cr)
- CHEM 3322—Biochemistry (3 cr)
- or CHEM 4351—Biochemistry I (3 cr)
- CHEM 3324—Biochemistry Laboratory (1 cr)
- or CHEM 4363—Biochemistry Laboratory (2 cr)

Biochemistry and Molecular Biology B.S.

Chemistry and Biochemistry

Required credits to graduate with this degree: 120. Required credits within the major: 83.

Biochemistry and molecular biology is the study of life at the molecular level. This field is both a life science and a chemical science, exploring the chemistry of living organisms and the molecular basis for the processes that occur in living cells. The Department of Chemistry and Biochemistry provides classroom and laboratory learning opportunities and research experiences across the discipline to meet the needs of students in engineering, liberal arts and preprofessional programs as well as those of students who wish to pursue careers or graduate studies in chemistry or related disciplines.

Honors Requirements: The Department of Chemistry and Biochemistry honors program helps outstanding biochemistry and molecular biology majors become competent, independent research workers, encourages student interest in the discipline, and aids in the transition from student to working scientist. Qualified majors may apply after the first semester of their sophomore year. Participants choose a research adviser and complete two semesters on a jointly developed project. Written reports and an oral presentation of the research are also required.

Admission Requirements

For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements

Requirements for the B.S. in biochemistry and molecular biology include:

- Liberal education requirements
- Advanced writing requirement: WRIT 3xxx
- A minor from another area of study is required
- Students who earn a B.S. in biochemistry and molecular biology (BMB) will have met the requirements for the B.A. in chemistry and for the chemistry minor. However, neither the BMB major/B.A. chemistry major combination nor the BMB major/chemistry minor combination satisfies the college degree requirement for a second major or minor. The B.S. BMB major/B.S. chemistry major combination does satisfy the college degree requirement.
Swenson College of Science and Engineering

- Students earning a B.S. degree who wish to have their program certified by the American Chemical Society must take advanced courses that include additional hours of laboratory work.

Year One
High school algebra and high school chemistry are required for CHEM 1151 and CHEM 1161.

This schedule presupposes placement into MATH 1296.

- BIOL 1011—General Biology I, LE CAT4 (5 cr)
- BIOL 1012—General Biology II (5 cr)
- MATH 1296—Calculus I, LE CAT2 (5 cr)
- MATH 1297—Calculus II (5 cr)
- CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
 or CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
- CHEM 1152—General Chemistry II (5 cr)
 or CHEM 1162—Honors: General Chemistry II, H (5 cr)

Year Two
- BIOL 2101—Cell Biology (3 cr)
- CHEM 2541—Organic Chemistry I (3 cr)
- CHEM 2542—Organic Chemistry II (3 cr)
- CHEM 2543—Organic Chemistry I Laboratory (1 cr)
- PHYS 2011—General Physics I, LE CAT4 (4 cr)
- PHYS 2012—General Physics II (4 cr)

Take the following course pair or course:
- CHEM 2222—Quantitative Analysis (3 cr)
 and CHEM 2223—Quantitative Analysis Laboratory (1 cr)
- CHEM 2242—Analytical Chemistry and the Environment in Poland (4 cr)

Year Three
- BIOL 2201—Genetics (3 cr)
- BIOL 4231—Molecular Biology (3 cr)
- BIOL 2802—Ecology Laboratory (2 cr)
- BIOL 3987—Biology Seminar (1 cr)
- BIOL 4802—Evolution (3 cr)

Year Four
- CHEM 3432—Descriptive Inorganic Chemistry (2 cr)
- CHEM 4184—Undergraduate Seminar I (1 cr)
- CHEM 4185—Undergraduate Seminar II (1 cr)
- CHEM 4373—Physical Organic Chemistry (3 cr)

Elective
Take 3 or more credits from the following:
- CHEM 4242—Inorganic Analysis (3 cr)
- CHEM 4436—Inorganic Chemistry (3 cr)
- BIOL 4553—General Microbiology (4 cr)
- BIOL 4556—General Microbiology offered in Wroclaw, Poland (4 cr)
- IBS S101—Biochemistry and Molecular Biology (3 cr)
- MATH 5233—Mathematical Foundations of Informatics (3 cr)
- MDBC 5202—Cellular and Molecular Biology (3 cr)
- MICB 5545—Immunobiology (3 cr)

Biology B.A.
Biology; College of Liberal Arts

Required credits to graduate with this degree: 120.
Required credits within the major: 60 to 71.

Biology has long been recognized as basic to environment, agriculture, and medicine. Because the topics studied by biologists range from subcellular particles to global environmental concerns, and because of the variety of living organisms and the various ways of studying them, many specialties have developed. The B.A. program is committed to the advancement of knowledge through scholarly research and other creative activities.

Admission Requirements
For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements
Requirements for the B.A. in biology include:
- Liberal education requirements
- Advanced writing requirement: COMP 3150—Advanced Writing: Science (3 cr)
- Major requirements (59–70 cr): 24 core biology credits, which include coursework in general biology, genetics, cell biology, ecology, evolution, and seminar; 17–28 credits of supporting courses in mathematics, statistics, and chemistry; 18 credits of biology electives at 2xxx or above to provide flexibility in pursuing personal interests or career preparation
- A minor or a second major from another area of study

Biology Core Courses
- BIOL 1011—General Biology I, LE CAT4 (5 cr)
- BIOL 1012—General Biology II (5 cr)
- BIOL 2101—Cell Biology (3 cr)
- BIOL 2201—Genetics (3 cr)
- BIOL 2802—Ecology Laboratory (2 cr)
- BIOL 3987—Biochemistry Seminar (1 cr)
- BIOL 4802—Evolution (3 cr)
- BIOL 2102—Cell Biology Laboratory (1 cr)
- CHEM 2242—Analytical Chemistry and the Environment in Poland (4 cr)
- CHEM 2222—Quantitative Analysis (3 cr)

Chemistry
- CHEM 1113—Introduction to General, Organic, and Biological Chemistry I, LE CAT4 (5 cr)
- CHEM 1114—Introduction to General, Organic, and Biological Chemistry II (5 cr)
 or take the following courses:
- CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
- CHEM 1152—General Chemistry II (5 cr)
- CHEM 2242—Organic Chemistry I Laboratory (1 cr)
- CHEM 2244—Organic Chemistry II Laboratory (1 cr)
 or take the following courses:
- CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
- CHEM 1162—Honors: General Chemistry II, H (5 cr)
- CHEM 2242—Organic Chemistry I Laboratory (1 cr)
- CHEM 2244—Organic Chemistry II Laboratory (1 cr)
Math—Option A or Option B

Choose math from Option A or B

Option A
MATH 1250—Precalculus Analysis, LE CAT2 (4 cr)
and
STAT 1411—Introduction to Statistics, LE CAT2 (3 cr)
or
STAT 2411—Statistical Methods, LE CAT2 (3 cr)

-or-
Option B
MATH 1290—Calculus for the Natural Sciences, LE CAT2 (5 cr)
or
MATH 1296—Calculus I, LE CAT2 (5 cr)
MATH 1297—Calculus II (5 cr)
or
STAT 1411—Introduction to Statistics, LE CAT2 (3 cr)
or
STAT 2411—Statistical Methods, LE CAT2 (3 cr)
or
STAT 3611—Introduction to Probability and Statistics (4 cr)

Biology Electives 2xxx-5xxx (18 cr)
BIOL 2xxx or above must include a minimum of two lab courses or courses with a lab component. Two of the following may be used: MICB 5545, PHSL 5601, PHSL 5602.

Biology B.S.

Biology
Required credits to graduate with this degree: 120.
Required credits within the major: 77 to 82.
The B.S. in biology offers preparation for graduate school and a sound basis for professional training in the biological and health sciences. Biology is an unusually broad field, and students can tailor their programs to fit their own needs and interests. To provide flexibility in pursuing personal interests or career preparation, the student chooses 18 credits of upper division biology electives.
The Department of Biology encourages students to develop as active scholars and to participate in undergraduate research. The B.S. degree is detailed and specific with a concentration in science related coursework.

Admission Requirements
For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements
Requirements for the B.S. in biology include:
- Liberal education requirements
- Advanced writing requirement: WRIT 3150—Advanced Writing: Science (3 cr)
- A minor or second major from another area of study; the cell biology major may not be used to meet this requirement
- Exit interview

Biology Core Courses
BIOL 1011—General Biology I, LE CAT4 (5 cr)
BIOL 1012—General Biology II (5 cr)
BIOL 2101—Cell Biology (3 cr)
BIOL 2201—Genetics (3 cr)
BIOL 2801—General Ecology (3 cr)
BIOL 3987—Biology Seminar (1 cr)
BIOL 4802—Evolution (3 cr)
BIOL 2102—Cell Biology Laboratory (2 cr)
or
BIOL 2202—Genetics Laboratory (2 cr)
or
BIOL 2802—Ecology Laboratory (2 cr)

Courses From Other Programs
First math course is determined by math placement exam. This schedule presupposes placement into MATH 1290/1296.
CHEM 2541—Organic Chemistry I (3 cr)
CHEM 2543—Organic Chemistry I Laboratory (1 cr)
CHEM 2542—Organic Chemistry II (3 cr)
CHEM 2544—Organic Chemistry II Laboratory (1 cr)
CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
or
CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
CHEM 1152—General Chemistry II (5 cr)
or
CHEM 1162—Honors: General Chemistry II, H (5 cr)
MATH 1290—Calculus for the Natural Sciences, LE CAT2 (5 cr)
or
MATH 1296—Calculus I, LE CAT2 (5 cr)
or
MATH 1596—Honors: Calculus I, LE CAT2, H (5 cr)
MATH 2411—Statistical Methods, LE CAT2 (3 cr)
or
MATH 3611—Introduction to Probability and Statistics (4 cr)
or
MATH 1297—Calculus II (5 cr)

Take one of the following course series:
PHYS 1001—Introduction to Physics I, LE CAT4 (5 cr)
PHYS 1002—Introduction to Physics II (5 cr)
or
PHYS 2011–2012 (This is a calculus-based series)
PHYS 2011—General Physics I, LE CAT4 (4 cr)
and
PHYS 2012—General Physics II (4 cr)

Biology Electives 2xxx-5xxx
Take 18 credits from BIOL 2xxx, 3xxx, 4xxx, 5xxx:
BIOL 2xxx or above must include a minimum of two lab courses or courses with a lab component. At least one of these must be BIOL 3601, BIOL 3701, or (BIOL 4501 or BIOL 4503).
Two of the following may be used: MDBC 5501, MICB 5545, MICB 5555, PHSL 5601, PHSL 5602.
Two credits of SSP 3002—Teaching Assistant Practicum for supplemental instruction in biology may be substituted for BIOL 3993 an upper division elective with department approval.

Biology Minor

Biology
Required credits in this minor: 35.
Biology has long been recognized as basic to such important areas as environment, agriculture, and medicine.

Minor Requirements

Chemistry
CHEM 2541—Organic Chemistry I (3 cr)
CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
or
CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
CHEM 1152—General Chemistry II (5 cr)
or
CHEM 1162—Honors: General Chemistry II, H (5 cr)
Swenson College of Science and Engineering

Cell and Molecular Biology B.S.

Biology

Required credits to graduate with this degree: 120.
Required credits within the major: 81 to 87.

Cell and molecular biology are two of the most rapidly growing areas of modern biology. This major prepares students for graduate school and careers in cell biology, genetics, developmental biology, physiology, immunology, biotechnology, molecular biology and microbiology. The major is also appropriate for students considering professional schools of medicine, dentistry, pharmacy, and veterinary medicine.

The program is administered by the Department of Biology and involves faculty in both the College of Science and Engineering and the Medical School Duluth.

Admission Requirements

For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements

Requirements for the B.S. in cell biology include:

- Liberal education requirements
- Advanced writing requirement: WRIT 3150—Advanced Writing: Science (3 cr)
- A minor or second major from another area of study; biology may not be used to satisfy this requirement
- Exit interview

Biology Core Courses

BIOL 1011—General Biology I, LE CAT4 (5 cr)
BIOL 1012—General Biology II (5 cr)
BIOL 2101—Cell Biology (3 cr)
BIOL 2201—Genetics (3 cr)
BIOL 3987—Biology Seminar (1 cr)
BIOL 4231—Molecular Biology (3 cr)
BIOL 4361—Developmental Biology (3 cr)
BIOL 4802—Evolution (3 cr)
BIOL 5232—Molecular Biology Laboratory (2 cr)
BIOL 2102—Cell Biology Laboratory (2 cr)
or BIOL 2202—Genetics Laboratory (2 cr)
or BIOL 3703—Animal Physiology (3 cr)
or BIOL 4603—Plant Physiology (3 cr)
BIOL 4501—General Microbiology (4 cr)
or BIOL 4503—General Microbiology offered in Wroclaw, Poland (4 cr)

Courses From Other Programs

CHEM 2541—Organic Chemistry I (3 cr)
CHEM 2543—Organic Chemistry I Laboratory (1 cr)
CHEM 2542—Organic Chemistry II (3 cr)
CHEM 2544—Organic Chemistry II Laboratory (1 cr)
CHEM 3322—Biochemistry (3 cr)
CHEM 3324—Biochemistry Laboratory (1 cr)
CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
or CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
CHEM 1152—General Chemistry II (5 cr)
or CHEM 1162—Honors: General Chemistry II, H (5 cr)
MATH 1296—Calculus I, LE CAT2 (5 cr)
or MATH 1290—Calculus for the Natural Sciences, LE CAT2 (5 cr)
or MATH 1596—Honors: Calculus I, LE CAT2, H (5 cr)
PHSL 2012—Statistical Methods, LE CAT2 (3 cr)
or STAT 2411—Introduction to Probability and Statistics (4 cr)
or MATH 1297—Calculus II (5 cr)

Take one of the following course pairs:
PHYS 1001—Introduction to Physics I, LE CAT4 (5 cr)
and PHYS 1002—Introduction to Physics II (5 cr)
or PHYS 2011—General Physics I, LE CAT4 (4 cr)
and PHYS 2012—General Physics II (4 cr)

Electives (5 cr)

If both BIOL 2102 and 2202 are taken one may be used for elective credit.
If both BIOL 3703 and 4603 are taken one may be used for elective credit.

Two credits maximum of BIOL 3993 or SSP 3002 may be taken for TA or SI in upper division cell and molecular biology core and elective laboratory courses with prior department approval.

BIOL 3990 and 5590 special topics may be accepted only by
prior department approval.

Take 0–5 credits from the following:
BIOL 3994—Undergraduate Research (1–3 cr)
BIOL 5235—Biotechnology (4 cr)
BIOL 5511—Virology (3 cr)
BIOL 5603—Plant Physiology Laboratory (2 cr)
BIOL 5772—Mechanisms of Neural Behavior (3 cr)
BIOL 5801—Microbial Ecology (2 cr)
BIOL 5802—Microbial Ecology Laboratory (2 cr)
BIOL 5868—Ecotoxicology (3 cr)
MATH 5233—Mathematical Foundations of Bioinformatics (3 cr)
MDBC 5501—Neurobiochemistry (2 cr)
MICB 5545—Immunobiology (3 cr)
MICB 5555—Molecular Pathogenesis: Current Concepts (3 cr)
PHSL 5601—Physiology of Organ Systems I (4 cr)
PHSL 5602—Physiology of Organ Systems II (2 cr)
PHSL 5701—Sensory Physiology (2 cr)

Chemical Engineering B.S.Ch.E.

Chemical Engineering

Required credits to graduate with this degree: 130.
Required credits within the major: 105.

The mission of the Department of Chemical Engineering at the University of Minnesota Duluth is to offer students a high quality educational experience that includes engineering theory, application, experimentation, and design. The department is dedicated to achieving recognition for excellence in engineering education through continuously improving its program, adding to the body of knowledge through research, providing an environment for professional development, and serving the profession.

Program Educational Objectives are statements that describe the expected accomplishments of graduates during the first few years after graduation. The chemical engineering program’s educational objectives are to produce graduates who

1. are able to apply theoretical and practical knowledge of engineering in the workplace,
2. possess the ability to communicate effectively with technical and non-technical users of technology,
3. are prepared to engage in advanced or additional education in their chosen field of endeavor or interest, and
4. recognize that the broader aspects of engineering practices include economic, environmental, social, political, and professional constraints.
This four-year baccalaureate (B.S.Ch.E.) degree program emphasizes the development of the student’s ability to analyze and design chemical processing systems. By the end of the program, the student must demonstrate the ability to solve engineering problems, a sensitivity to the social and environmental impacts of the engineering profession, and the ability to maintain a high level of competency.

Chemical engineering graduates are qualified for employment in diverse industries, ranging from those that manufacture inorganic chemicals, petrochemicals, plastics, synthetic fibers, paper and pulp, and pharmaceuticals to those that process hazardous and nuclear wastes. Graduates are qualified for assignments that include plant operations, process development, process control, project engineering, or sales, and frequently pursue engineering management later in their careers. They are also well qualified to continue with professional or graduate education.

The chemical engineering curriculum is based on fundamental sciences including physics, chemistry, and mathematics; traditional chemical engineering sciences such as material and energy balance, transport phenomena, and thermodynamics; and chemical engineering design courses, with a capstone design course during the senior year. Students have an opportunity to become involved in research, through either the Undergraduate Research Opportunities Program or the department honors program.

Admission Requirements
Students may declare a chemical engineering major as freshmen or sophomores.

Students must complete the program’s lower division before applying to upper division (junior and senior years). Admission is competitive and applicants are admitted on a space-available basis, determined by the cumulative GPA in composition, physics, mathematics, engineering statics, and chemistry through CHEM 2541.

Transfer students should refer to the pre-engineering junior-level admission (upper division) requirements in the pre-professional programs. Students must complete the upper division courses to complete the degree. See the SCSE section of the UMD online catalog.

For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements
Requirements for the B.S.Ch.E include:

- A 2.00 minimum GPA in all work attempted at UMD; a 2.00 minimum GPA in all work, including transfer credits; and successful completion of 75 percent of all work attempted
- A 2.00 minimum GPA in all courses taken in the chemical engineering major, including required courses in related fields. This GPA requirement applies to all courses in the major taken at UMD calculated separately and also to all courses in the major when transfer credits are included.

Year One
First math course is determined by math placement exam. This schedule presupposes placement into MATH 1296.

CHE 1011—Introduction to Chemical Engineering., LE CAT5 (3 cr)
CS 1121—Introduction to Programming in Visual BASIC.NET, LE CAT3 (3 cr)
MATH 1296—Calculus I, LE CAT2 (5 cr)
MATH 1297—Calculus II (5 cr)
PHYS 2011—General Physics I, LE CAT4 (4 cr)
WRIT 1120—College Writing, LE CAT1 (3 cr)
CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
CHEM 1152—General Chemistry II (5 cr)
or CHEM 1162—Honors: General Chemistry II, H (5 cr)

Year Two
CHE 2111—Material and Energy Balances (3 cr)
CHE 2121—Chemical Engineering Thermodynamics (3 cr)
CHE 3031—Computational Methods in Chemical Engineering (3 cr)
CHEM 2541—Organic Chemistry I (3 cr)
CHEM 2543—Organic Chemistry I Laboratory (1 cr)
ENGR 2015—Statics (3 cr)
MATH 1296—Calculus I, LE CAT2 (5 cr)
MATH 3280—Differential Equations with Linear Algebra (4 cr)
PHYS 2012—General Physics II (4 cr)
Take all of the following in the same term:
CHEM 2222—Quantitative Analysis (3 cr)
CHEM 2223—Quantitative Analysis Laboratory (1 cr)

Year Three
CHE 2011—Design of Engineering Experiments (3 cr)
CHE 3111—Fluid Mechanics (3 cr)
CHE 3112—Heat and Mass Transfer (3 cr)
CHE 3231—Properties of Engineering Materials (3 cr)
CHE 3241—Principles of Particle Technology (3 cr)
CHE 4402—Process Dynamics and Control (3 cr)

Advanced Writing Requirement
WRIT 3130—Advanced Writing: Engineering (3 cr)

CHEM 2223—Quantitative Analysis Laboratory (1 cr)

CHEM 25xx—5xxx Electives 25xx or above; may not be satisfied with CHEM 3184 or CHEM 4632.
Take 8 or more credit(s) from the following:
CHEM 2xx
CHEM 3xx
CHEM 4xx
CHEM 5xx

SCI or ENGR 3xxx (or higher) Elective (3 cr)
Advanced science or engineering elective: 3xxx or higher course in the Swenson College of Science and Engineering.

Year Four
CHE 3211—Chemical Engineering Laboratory I (3 cr)
CHE 4111—Separations (3 cr)
CHE 4211—Chemical Engineering Laboratory II (3 cr)
CHE 4301—Chemical Reaction Engineering (3 cr)
CHE 4501—Chemical Engineering Design I (4 cr)
CHE 4502—Chemical Engineering Design II (4 cr)
CHE 4xxx (or higher) elective (3 cr)
Chemistry B.A.

Chemistry and Biochemistry; College of Liberal Arts

Required credits to graduate with this degree: 120.
Required credits within the major: 50 to 52.

Chemistry is the study of matter and the physical changes that matter undergoes. Chemical reactions occur every day and in every aspect of life: respiration, metabolism and growth in living systems, combustion in cars and heating plants, pharmaceutical and polymer production, and the conversion of raw materials to usable products.

Chemistry is an important subject. Students who are interested in health sciences such as medicine, pharmacy, dentistry, and related fields need to take several semesters of chemistry. Students who like scientific and technical subjects, and who have a solid math and science background from high school are best prepared to major in chemistry.

Students completing the B.A. in chemistry generally plan to use chemistry as a study field that complements areas such as law, library science, technical writing, public relations, or sales. B.A. students are encouraged to participate in undergraduate research.

Honors Requirements: Qualified majors may apply after the first semester of their sophomore year. Participants choose a research adviser and complete two semesters of effort on a jointly developed project. Written reports and an oral presentation of the research are also required.

Admission Requirements

For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements

Requirements for the B.A. in chemistry include:

• Completion of at least 120 degree credits, including the liberal education program, an approved major for the B.A.

• A second field of study (either a minor or another major). Students who earn a B.S. in biochemistry and molecular biology (BMB) will have met the requirements for the B.A. in chemistry and for the chemistry minor. However, neither the BMB major/B.A. chemistry major combination nor the BMB major/chemistry minor combination satisfies the college degree requirement for a second major or minor. The B.S. BMB major/B.S. chemistry major combination does satisfy the college degree requirement.

• Elective credits.

• Degree candidates must complete at least 30 degree credits at UMD. At least 20 of the last 30 degree credits immediately before graduation must be taken at UMD.

• A 2.00 cumulative University of Minnesota grade point average (GPA). Transfer grades and credits outside the University of Minnesota system are not calculated into the University GPA; however, transfer credits are counted as degree credits.

• A 2.00 cumulative GPA in the major(s) and minor(s).

• Advanced writing requirement: WRIT 31xx course or equivalent (3 cr).

• SSP 1000—Introduction to College Learning (1 cr) or CLA 1001—Learning Community Integrative Seminar (1 cr).

First Year

High school algebra and high school chemistry are required for CHEM 1151 and CHEM 1161. This schedule presupposes placement in MATH 1296 as the first course.

MATH 1296—Calculus I, LE CAT2 (5 cr)
MATH 1297—Calculus II (5 cr)
CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
or CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
CHEM 1152—General Chemistry II (5 cr)
or CHEM 1162—Honors: General Chemistry II, H (5 cr)

Second Year

CHEM 2541—Organic Chemistry I (3 cr)
CHEM 2543—Organic Chemistry I Laboratory (1 cr)
CHEM 2542—Organic Chemistry II (3 cr)
CHEM 2544—Organic Chemistry II Laboratory (1 cr)
Take the following course pair or course:
CHEM 2222—Quantitative Analysis (3 cr)
and CHEM 2223—Quantitative Analysis Laboratory (1 cr)
or CHEM 2242—Analytical Chemistry and the Environment in Poland (4 cr)
Take one of the following course pairs (PHYS 2011 and 2012 are strongly encouraged):
PHYS 1001—Introduction to Physics I, LE CAT4 (5 cr)
and PHYS 1002—Introduction to Physics II (5 cr)
or PHYS 2011—General Physics I, LE CAT4 (4 cr)
and PHYS 2012—General Physics II (4 cr)

Third Year

CHEM 3322—Biochemistry (3 cr)
CHEM 3324—Biochemistry Laboratory (1 cr)
CHEM 4633—Physical Chemistry Laboratory (1 cr)
CHEM 4634—Physical Chemistry (3 cr)

Fourth Year

CHEM 3432—Descriptive Inorganic Chemistry (2 cr)

Chemistry B.S.

Chemistry and Biochemistry

Required credits to graduate with this degree: 120.
Required credits within the major: 70.

Chemistry is a body of knowledge that helps explain the physical world and its processes. Chemists study substances—their composition, structures, properties, and reactions. The Department of Chemistry and Biochemistry provides classroom and laboratory learning opportunities and research experiences across the discipline designed to meet the needs of students in engineering, liberal arts and preprofessional programs as well as those who wish to pursue careers or graduate studies in chemistry or related disciplines.

Honors Requirements: The Department of Chemistry and Biochemistry honors program helps outstanding chemistry majors develop into competent, independent research workers, encourages student interest in the discipline, and aids in the transition from student to working scientist. Qualified majors may apply after the first semester of their sophomore year. Participants choose a research adviser and complete two semesters on a jointly developed project. Written reports and an oral presentation of the research are also required.

Admission Requirements

For information about UMD admission requirements, visit the UMD Admissions Web site.
Program Requirements

Requirements for the B.S. in chemistry include:

- Liberal education requirement
- Advanced writing requirement: WRIT 3xx
- A minor from another area of study
- The B.S. Chemistry major/B.S. BMB major combination satisfies the college degree requirement for a second major or minor
- Students earning a B.S. degree who wish to have their program certified by the American Chemical Society must take advanced courses that include additional hours of laboratory work

Year One

High school algebra and high school chemistry are required for CHEM 1151 and CHEM 1161. This schedule presupposes placement into MATH 1296.

MATH 1296—Calculus I, LE CAT2 (5 cr)
MATH 1297—Calculus II (5 cr)
CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
or CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
CHEM 1152—General Chemistry II (5 cr)
or CHEM 1162—Honors: General Chemistry II, H (5 cr)

Year Two

CHEM 2541—Organic Chemistry I (3 cr)
CHEM 2542—Organic Chemistry II (3 cr)
CHEM 2543—Organic Chemistry I Laboratory (1 cr)
CHEM 2544—Organic Chemistry II Laboratory (1 cr)
MATH 3280—Differential Equations with Linear Algebra (4 cr)
PHYS 2011—General Physics I, LE CAT4 (4 cr)
PHYS 2012—General Physics II (4 cr)
Take the following course pair or course.
CHEM 2212—Environmental Chemistry (4 cr)
or CHEM 2242—Analytical Chemistry and the Environment in Poland (4 cr)

Year Three

CHEM 3322—Biochemistry (3 cr)
CHEM 4351—Biochemistry I (3 cr)
CHEM 4352—Biochemistry II (3 cr)
CHEM 4641—Physical Chemistry I (3 cr)
CHEM 4642—Physical Chemistry II (3 cr)
CHEM 4643—Physical Chemistry Laboratory I (1 cr)
CHEM 4644—Physical Chemistry Laboratory II (1 cr)

Year Four

CHEM 4184—Undergraduate Seminar I (1 cr)
CHEM 4185—Undergraduate Seminar II (1 cr)
CHEM 4242—Instrumental Analysis (3 cr)
CHEM 4243—Instrumental Chemistry Laboratory (2 cr)
CHEM 4432—Descriptive Inorganic Chemistry (2 cr)
CHEM 4434—Inorganic Chemistry Laboratory (2 cr)
CHEM 4435—Inorganic Chemistry (3 cr)
CHEM 4436—Inorganic Chemistry (3 cr)
CHEM 4634—Physical Chemistry (3 cr)
CHEM 4641—Physical Chemistry I (3 cr)
CHEM 4642—Physical Chemistry II (3 cr)
CHEM 4643—Physical Chemistry Laboratory I (1 cr)
CHEM 4644—Physical Chemistry Laboratory II (1 cr)

Chemistry Minor

Chemistry and Biochemistry

Required credits in this minor: 29 to 30.

Chemistry is a body of knowledge that helps explain the physical world and its processes.

Minors

Chemistry Minor Courses

CHEM 2212—Environmental Chemistry (4 cr)
or CHEM 2242—Analytical Chemistry and the Environment in Poland (4 cr)
Take 1 or more course(s) from the following:
CHEM 3322—Biochemistry (3 cr)
CHEM 4351—Biochemistry I (3 cr)
CHEM 4641—Physical Chemistry I (3 cr)
CHEM 4642—Physical Chemistry II (3 cr)
Take 1 or more course(s) from the following:
MATH 1290—Calculus for the Natural Sciences, LE CAT2 (5 cr)
MATH 1296—Calculus I, LE CAT2 (5 cr)
MATH 1297—Calculus II (5 cr)

Minor Requirements

Chemistry Minor Courses

CHEM 2212—Environmental Chemistry (4 cr)
or CHEM 2242—Analytical Chemistry and the Environment in Poland (4 cr)
Take 1 or more course(s) from the following:
CHEM 3322—Biochemistry (3 cr)
CHEM 4351—Biochemistry I (3 cr)
CHEM 4641—Physical Chemistry I (3 cr)
CHEM 4642—Physical Chemistry II (3 cr)
Take 1 or more course(s) from the following:
MATH 1290—Calculus for the Natural Sciences, LE CAT2 (5 cr)
MATH 1296—Calculus I, LE CAT2 (5 cr)

Civil Engineering B.S.C.E.

Civil Engineering

Required credits to graduate with this degree: 130 to 131.
Required credits within the major: 130 to 131.

The B.S.C.E. program integrates topics from chemistry, physics, advanced mathematics and statistics, geology, and core engineering science to prepare graduates to work professionally in both public and private organizations that design, develop, and construct structures; design, build, and maintain highway systems; and design, operate, and control water resource systems. Graduates are rooted in safe and efficient design skills and show respect for and strive to improve the environment wherever they work.

The program emphasizes four of the core tracks in civil engineering: transportation systems, water resource engineering, structural engineering, and geotechnical engineering. Upper division students are exposed to each of these areas and required to specialize in one by taking additional elective courses.

Civil engineering graduates are qualified for employment in a wide variety of organizations, both public and private, including design, material testing and manufacture, construction, transportation, natural resources development, and energy. Graduates are prepared to begin their first step toward professional registration by taking the FE exam before completing their collegiate degree. They also are well qualified to continue with graduate education in civil engineering or engineering management.

Students in the B.S.C.E. program have the opportunity to put their design and entrepreneurial skills to use in ASCE design competitions, projects sponsored by regional companies, and research projects in the Undergraduate Research Opportunities Program.
Swenson College of Science and Engineering

Honors Requirements: To graduate with department honors, a student must have a 3.40 GPA, be an active member of Tau Beta Pi or a professional engineering society (ASCE) and be nominated by a department faculty member.

Admission Requirements
Students must complete 11 courses before admission to the program.
Freshmen and transfer students are usually admitted to pre-major status before admission to this major.
A GPA above 2.00 is preferred for the following:
As a part of the B.S.C.E. major requirements, students must complete (with grades of C- or above) 75 percent of all courses attempted.

For information about UMD admission requirements, visit the UMD Admissions Web site.

Course Admission Requirements (42 cr)
Admission to the upper division B.S.C.E. program is competitive and based on performance in lower division courses and space availability. A C- or better is required in all program courses. In addition, students must successfully complete (with grades of C- or above) 75 percent of all courses attempted.

For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements
• Liberal education program requirements
• Advanced writing requirement: WRIT 31xx
• Each graduate must complete a minimum of 2 elective courses in their focus area: structural engineering, water resources engineering, transportation engineering, geotechnical engineering.

B.S.C.E. Major Requirements
As a part of the B.S.C.E. major requirements, students must choose 3 courses for 9 credits of civil engineering technical electives from the focus groups listed below. (Each graduate must complete a minimum of 2 elective courses in their focus area.)

Additional B.S.C.E. Requirements

Civil Engineering Focus Groups
To complete the required focus group, a degree candidate must take at least two of their four elective courses from the listed electives in the focus group. It is possible that a student can complete two focus groups when they complete their degree following the B.S.C.E. program.
Students are required to complete one of the following course groups.

Computer Information Systems
B.S.

Computer Science
Required credits to graduate with this degree: 120.
Required credits within the major: 78.
Professionals in the field of information systems work with information technology and must have sound technical knowledge of computers, software, and communications. Since they operate within an organizational framework, they must also understand business and business functions. The B.S. in computer information systems is a four-year program that includes formal courses in information technology (including system architecture, operating systems, interactive
multimedia computing, and networking), management information systems, project organization and management, and business organizational functions. The program also includes supporting courses in communications, mathematics and statistics, and the economic, social, and ethical implications of computing. Goals of the learning process include the development of good software development and communication skills and the ability to work effectively in team environments. This program provides both the necessary foundational studies for students seeking entry-level positions in information systems and a strong basis for continued career growth.

This program is appropriate for students seeking a professional career in the computer information systems field. It is a multidisciplinary program that emphasizes the study of systems development methodology and technology for our rapidly changing information society.

Graduates are prepared for positions in the design and development of information systems as project managers, information systems center specialists, network administrators, and database administrators. This major is also appropriate preparation for information systems graduate programs or MBA professional programs.

Admission Requirements
For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements
Requirements for the B.S. in computer information systems include:

- Liberal education requirements
- Advanced writing requirement: WRIT 3121—Advanced Writing: Business and Organization or WRIT 3130—Advanced Writing: Engineering or WRIT 3150—Advanced Writing: Science (3)
- Minor in business administration
- Exit interview before graduation

Computer Information Systems Core Courses
CS 1511—Computer Science I, LE CAT3 (5 cr)
CS 1521—Computer Science II (5 cr)
CS 2511—Software Analysis and Design (4 cr)
CS 3011—Information Technology Hardware and Software (4 cr)
FMIS 2201—Information Technology in Business (3 cr)
CS 1511—Computer Science I, LE CAT3 (5 cr)
or CS 1581—Honors: Computer Science I, LE CAT3, H (5 cr)

Advanced Courses
CS 3111—Computer Ethics (4 cr)
CS 3121—Interactive Multimedia Technology (4 cr)
CS 3211—Database System Concepts (4 cr)
CS 3221—Operating Systems Practicum (4 cr)
CS 4411—Data Communications and Network Technology (4 cr)
CS 4531—Software Engineering (4 cr)

Additional Requirements
Additional requirements also include completing a business administration minor for non-LSBE students.

Computer Information Systems Minor
Computer Science
Required credits in this minor: 29.
The computer information systems minor is not available to computer science majors.

Minor Requirements
Core Courses
CS 1511—Computer Science I, LE CAT3 (5 cr)
CS 1521—Computer Science II (5 cr)
CS 2511—Software Analysis and Design (4 cr)
CS 3011—Information Technology Hardware and Software (4 cr)
LSBE 1101—The Business Environment, LE CAT8 (3 cr)
or FMIS 2201—Information Technology in Business (3 cr)

Electives
Take 2 or more course(s) totaling no more than 8 credit(s) from the following:
CS 3121—Interactive Multimedia Technology (4 cr)
CS 3211—Database System Concepts (4 cr)
CS 3221—Operating Systems Practicum (4 cr)
CS 4411—Data Communications and Network Technology (4 cr)
CS 4531—Software Engineering (4 cr)

Computer Science B.S.

Computer Science
Required credits to graduate with this degree: 120.
Required credits within the major: 105 to 108.

Computer science is a discipline that requires understanding the design of computers and computational processes. The B.S. in computer science is an accredited, four-year program that provides a solid foundation in mathematics and statistics, computational problem solving, software design and analysis, programming languages, algorithms, data structures, and computer organization and architecture. The program also requires that students acquire significant knowledge in several subdisciplines of computer science, thus enabling them to apply and situate their knowledge of computer science fundamentals. Goals of the learning process include highly developed programming skills, an understanding of the context in which computing activities occur, and an ability to communicate effectively. The program provides the necessary foundational studies for students preparing for graduate school as well as those seeking careers in industry.

The program is accredited by the Computing Accreditation Commission of the Accreditation Board for Engineering and Technology.

Honors Requirements: Program candidates submit an application to the department honors committee. Participants must maintain a 3.00 cumulative GPA and a 3.30 GPA in the major and complete an honors research project supervised by a faculty member; credit for the project can be earned in CS 4994—Honors Project.

Admission Requirements
For information about UMD admission requirements, visit the UMD Admissions Web site.
Program Requirements
Requirements for the B.S. in computer science include:
• Liberal education requirements
• Advanced writing requirement: WRIT 3130 or 3150
• Senior survey, contact the computer science office for details.
• A minor or a second major from another department
• Computer science majors may not minor in mathematics

Core Courses
CS 1521—Computer Science II (5 cr)
CS 2511—Software Analysis and Design (4 cr)
CS 2521—Computer Organization and Architecture (4 cr)
ECE 1315—Digital System Design (4 cr)
CS 1511—Computer Science I, LE CAT3 (5 cr)
or CS 1581—Honors: Computer Science I, LE CAT3, H (5 cr)

Advanced Courses
CS 3111—Computer Ethics (4 cr)
CS 3512—Computer Science Theory (4 cr)
CS 5631—Operating Systems (4 cr)
CS 5621—Computer Architecture (4 cr)
or CS 5651—Computer Networks (4 cr)

Advanced Course Electives (Breadth)
Three additional advanced course electives, including at least one breadth course: CS 5621 or CS 5651 must be taken for this major. If both courses are taken, the second course fulfills the requirement of one additional breadth course.

Take 1 or more course(s) from the following:
CS 4511—Computability and Complexity (4 cr)
CS 4521—Algorithms and Data Structures (4 cr)
CS 4531—Software Engineering (4 cr)
CS 4611—Database Management Systems (4 cr)
CS 5541—Artificial Intelligence (4 cr)
CS 5551—User Interface Design (4 cr)
CS 5621—Computer Architecture (4 cr)
CS 5641—Compiler Design (4 cr)
CS 5651—Computer Networks (4 cr)

Advanced Course Electives (Other)
Take 0–2 course(s) from the following:
CS 4821—Computer Security (4 cr)
CS 5721—Computer Graphics (4 cr)
CS 5741—Object-Oriented Design (4 cr)
CS 5751—Introduction to Machine Learning (4 cr)
CS 5761—Introduction to Natural Language Processing (4 cr)
CS 5831—Information and Text Processing (4 cr)

Courses From Other Programs
COMM 1112—Public Speaking, LE CAT3 (3 cr)
MATH 1296—Calculus I, LE CAT2 (5 cr)
MATH 1297—Calculus II (5 cr)
MATH 2326—Introduction to Linear Algebra and Mathematical Reasoning (3 cr)
STAT 3611—Introduction to Probability and Statistics (4 cr)
WRIT 1120—College Writing, LE CAT1 (3 cr)
or WRIT 3130—Advanced Writing: Engineering (3 cr)
or WRIT 3150—Advanced Writing: Science (3 cr)

Lab Science Sequences
Complete one of the following lab science sequences:
BIOL 1011—General Biology I, LE CAT4 (5 cr)
BIOL 1012—General Biology II (5 cr)
or CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
CHEM 1152—General Chemistry II (5 cr)
or CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
CHEM 1162—Honors: General Chemistry II, H (5 cr)
or GEOL 1110—Geology and Earth Systems, LE CAT4 (4 cr)
GEOL 2311—Mineralogy (4 cr)
GEOL 2312—Petrology (5 cr)
or PHYS 2011—General Physics I, LE CAT4 (4 cr)
PHYS 2012—General Physics II (4 cr)

Electives From Other Programs (25 cr)
Additional approved courses from physics, chemistry, biology, astronomy and geology (4 cr). The total number of credits for the additional science course and the science sequence must be at least 12 credits.
Additional science course that is either in category 4 of the liberal education program or has a category 4 prerequisite.
21 credits of electives in the humanities, social sciences, and arts.

Computer Science Minor

Computer Science
Required credits in this minor: 30.
Computer science is a discipline that requires understanding the design of computers and computational processes.

Minor Requirements

Minor Courses
CS 1521—Computer Science II (5 cr)
CS 2511—Software Analysis and Design (4 cr)
MATH 1296—Calculus I, LE CAT2 (5 cr)
CS 1511—Computer Science I, LE CAT3 (5 cr)
or CS 1581—Honors: Computer Science I, LE CAT3, H (5 cr)

Electives
CS courses must be at 35xx or above.
Take 11 or more credit(s) from the following:
CS 3xxx
CS 4xxx
CS 5xxx
ECE 3341—Digital Computer Circuits (4 cr)
ECE 4305—Computer Architecture (4 cr)
CS 2521—Computer Organization and Architecture (4 cr)
or ECE 2325—Microcomputer System Design (4 cr)

Computer Science Applied Minor

Computer Science
Required credits in this minor: 27.
The computer science applied minor provides a thorough introduction to the use of computers as tools and complements studies in other disciplines.
The computer science minor and computer science applied minor are not available to computer information systems technology majors.

Minor Requirements

Minor Courses
CS 1521—Computer Science II (5 cr)
CS 2511—Software Analysis and Design (4 cr)
CS 1511—Computer Science I, LE CAT3 (5 cr)
or CS 1581—Honors: Computer Science I, LE CAT3, H (5 cr)
Electives (13 cr)
6 credits of approved electives from computer science or other departments with a significant computing component

CS 2xxx–5xxx
Take 7 or more credit(s) from the following:
- CS 2xxx
- CS 3xxx
- CS 4xxx
- CS 5xxx

Electrical and Computer Engineering B.S.E.C.E.

Electrical and Computer Engineering

Required credits to graduate with this degree: 128.
Required credits within the major: 128.

The mission of the Department of Electrical and Computer Engineering (ECE) is to provide a high quality educational opportunity in electrical and computer engineering for students in the region by delivering a program with a strong hands-on laboratory and design component in conjunction with a thorough foundation in theory and to provide students with the tools and skills to be lifelong major contributors to their profession and society as a whole. The B.S.E.C.E. program combines traditional electrical engineering topics with current computer design and analysis topics. The program is concerned with the theory, design, and application of electrical phenomena and digital computers, including electronic circuits, signal analysis, system design, and computer architecture. The department displays strengths in such diverse areas as electronics, signal processing, electromagnetics, digital computer systems, communications, and controls. Faculty specialize in areas such as VLSI design, microprocessor systems, image processing, robust control, solid state devices, optoelectronics, nanostructures, robotics, instrumentation, neural networks, and fuzzy logic. ECE balances theoretical and practical experience in electrical and computer engineering through analysis, synthesis, and experimentation, using facilities that include nine major instructional labs and several research labs.

Electrical and computer engineering program educational objectives:
1. Provide a high quality educational opportunity in electrical and computer engineering for students in the region.
2. Prepare students for a successful career in industry, academia, or government by learning the substance and methods of the electrical and computer engineering discipline, including technical, critical thinking, and communication skills.
3. Provide the opportunity for students to fully participate in the liberal education mission of the University.
4. Foster significant scholarly research for faculty and students.
5. Serve the well-being of the community, state, and region through the multifaceted efforts of UMD faculty and graduates.
6. Develop a foundation for lifelong learning.

Honors Requirements: To receive department honors upon graduation, students must finish the program with an overall GPA of at least 3.50, satisfactorily complete a research project under the guidance of a faculty member, and convey the results in an oral and written presentation to the department.

Admission Requirements

Students who enter the electrical and computer engineering program as freshmen must follow the lower division program.

Students should complete the lower division ECE program before applying to the upper division program. Admission is competitive and on a space-available basis. A minimum GPA of 2.00 is required for admission to the upper division program. See department for details.

For information about UMD admission requirements, visit the UMD Admissions Web site.

Lower Division (22 cr)

- ECE 1001—Introduction to Electrical and Computer Engineering (2 cr)
- ECE 1315—Digital System Design (4 cr)
- ECE 2006—Electrical Circuit Analysis (4 cr)
- ECE 2111—Linear Systems and Signal Analysis (4 cr)
- ECE 2212—Electronics I (4 cr)
- ECE 2325—Microcomputer System Design (4 cr)

Lower Division From Other Programs (40 cr)

First math course is determined by math ACT score. This schedule presupposes placement into MATH 1296.

- CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
- CHEM 1511—Computer Science I, LE CAT3 (5 cr)
- CS 1511—Computer Science I, LE CAT3 (5 cr)
- ECE 2212—Electronics I (4 cr)
- ECE 2006—Electrical Circuit Analysis (4 cr)
- ECE 1315—Digital System Design (4 cr)
- ECE 1001—Introduction to Electrical and Computer Engineering (2 cr)
- MATH 1296—Calculus I, LE CAT2 (5 cr)
- MATH 1297—Calculus II (5 cr)
- MATH 3280—Differential Equations with Linear Algebra (4 cr)
- PHYS 2011—General Physics I, LE CAT4 (4 cr)
- PHYS 2012—General Physics II (4 cr)
- WRIT 1120—College Writing, LE CAT1 (3 cr)

Program Requirements

Requirements for the B.S.E.C.E. in electrical and computer engineering include:
- Liberal education requirements:
- ECON 1022 or ECON 1023 from Category 6
- At least one course from Category 7
- PHIL 3242 from Category 8
- At least one course from Category 9
- At least one course emphasizing international perspective
- At least one course emphasizing cultural diversity
- Advanced writing requirement: WRIT 3130
- Completion of the ECE program as outlined satisfies the requirements for a computer science minor
- ECE majors must meet with their advisers each semester. See department for details.
- Completion of the ECE “Exit Survey,” and a one-to-one exit interview with the ECE department head
- Completion of at least 30 degree credits at UMD
Swenson College of Science and Engineering

- Completion at UMD of at least 20 of the last 30 degree credits immediately before graduation
- A minimum GPA of 2.00 in all courses taken in the major, including required courses in related fields.
- Final Project: Completion of a capstone team design project integrating the knowledge from their academic career. Project must involve the design of hardware or software to meet specifications agreed upon by the student and the faculty project adviser. Oral and written reports are required.

Upper Division (30 cr)
- ECE 3151—Control Systems (3 cr)
- ECE 3235—Electronics II (4 cr)
- ECE 3341—Digital Computer Circuits (4 cr)
- ECE 3445—Electromagnetic Fields (3 cr)
- ECE 3611—Introduction to Solid-State Semiconductors (3 cr)
- ECE 4951—ECE Design Workshop (4 cr)
 or ECE 4899—Senior Design Project I (1 cr)
 and ECE 4999—Senior Design Project II (3 cr)

ECE Technical Electives
- NOT including 4899, 4951, 4991, 4999
 - Take 9 or more credit(s) from the following:
 - ECE 4xxx
 - ECE 5xxx
- MUST include at least one of the following
 - Take 1 or more course(s) from the following:
 - ECE 4305—Computer Architecture (4 cr)
 - ECE 5315—Multiprocessor-Based System Design (3 cr)

Upper Division From Other Programs (36)
- CS 2311—Software Analysis and Design (4 cr)
- CS 5631—Operating Systems (4 cr)
- ENGR 2015—Statics (3 cr)
- MATH 3298—Calculus III (4 cr)
- PHYS 2011—General Physics I, LE CAT4 (4 cr)
 - CHE 2011—Design of Engineering Experiments (3 cr)
 - CHEM 1151—General Chemistry I, LE CAT4, H (5 cr)
 - CHEM 1152—General Chemistry II (3 cr)

Electrical and Computer Engineering Minor

Electrical and Computer Engineering
Required credits in this minor: 42.

The electrical and computer engineering minor provides a complete introduction to both analog circuit design and digital computer circuit design and analysis.

Minor Requirements

Lower Division
For computer science majors: CS 2521 may be substituted for ECE 2325
- ECE 1315—Digital System Design (4 cr)
- ECE 2006—Electrical Circuit Analysis (4 cr)
- ECE 2111—Linear Systems and Signal Analysis (4 cr)
- ECE 2212—Electronics I (4 cr)
- ECE 2325—Microcomputer System Design (4 cr)
- MATH 1196—Calculus I, LE CAT2 (5 cr)
- MATH 1297—Calculus II (5 cr)
- PHYS 2011—General Physics I, LE CAT4 (4 cr)
- PHYS 2012—General Physics II (4 cr)

Upper Division
- MATH 3280—Differential Equations with Linear Algebra (4 cr)

Environmental Engineering Minor Only

Chemical Engineering

Required credits in this minor: 46 to 47.

The environmental engineering minor develops a student’s ability to understand and address environmental concerns. Coursework provides broad-based science and engineering knowledge suited to pollution prevention and waste management. The minor enhances degrees in science or other engineering fields.

Minor Requirements

Lower Division (40–41 cr)
- CHEM 2111—Material and Energy Balances (3 cr)
- CHEM 2222—Quantitative Analysis (3 cr)
- CHEM 2333—Quantitative Analysis Laboratory (1 cr)
- ENGR 2015—Statics (3 cr)
- MATH 1196—Calculus I, LE CAT2 (5 cr)
- MATH 1296—Calculus II (5 cr)
- PHYS 2011—General Physics I, LE CAT4 (4 cr)
 - CHE 1011—Introduction to Chemical Engineering. LE CAT5 (3 cr)
 or CHE 2001—Introduction to Environmental Engineering, LE CAT4 (3 cr)
- CHEM 1151 General Chemistry I, LE CAT4 (5 cr)
 - CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
- CHEM 1152 General Chemistry II (5 cr)
 - CHEM 1162—Honors: General Chemistry II, H (5 cr)
- Take exactly 1 course(s) from the following:
 - CHE 2011—Design of Engineering Experiments (3 cr)
 - CHEM 3411—Engineering Statistics (3 cr)
 - STAT 3611—Introduction to Probability and Statistics (4 cr)

Upper Division (6 cr)
Other upper division electives may be substituted subject to department approval.
- CHE 4601—Biochemical Engineering (3 cr)
- CHE 4612—Hazardous Waste Processing Engineering (3 cr)
- CHE 4613—Air Pollution Control (3 cr)

Environmental Science B.S.

Swenson College of Science and Engineering

Required credits to graduate with this degree: 120.

Required credits within the major: 98 to 102.

The B.S. in environmental science is designed for students that want a multidisciplinary science education focusing on aspects of the environment. This environmental science program requires a broad base of knowledge in the basic sciences and mathematics, physics, chemistry, biology, Earth sciences, and statistics. In addition, prudent study of environmental science requires understanding of economic, political, and ethical considerations. Environmental science features an intense grounding in resource issues (including courses in renewable and non-renewable resources) and builds on the strength of UMD in freshwater issues. In addition, the capstone course deals with sources, distribution, and ultimate fate of air, water, and solid waste pollution. Elective courses
from areas, such as habitats, climate processes, environmental chemistry, quantitative methods, and global resources are also required.

The program is predicated on the belief that a student graduating with a B.S. in environmental science should have a firm background in physical and life sciences and a basic understanding of 1) existing environmental policies and regulations and the legislative process of their formation; 2) the major environmental issues including water, global climate, energy, pollution, and population; 3) techniques of environmental monitoring and prediction; and 4) economics and business organization.

Admission Requirements

For entering freshmen, the only admission requirement is acceptance into the College of Science and Engineering. Transfer students must meet campus and college requirements and are accepted into the program at the level corresponding to credits completed, based on existing transfer manuals and on faculty judgment when courses are not in existing manuals.

For information about UMD admission requirements, visit the [UMD Admissions Web site](https://umd.edu/admissions).

Program Requirements

Requirements for the B.S. in environmental science include:

- Liberal education requirements.
- Advanced writing requirement: WRIT 3150—Advanced Writing: Science (3 cr).
- A minor is not required.
- A 2.00 minimum GPA in the major, including supporting courses.
- A 2.00 minimum GPA in all work attempted at UMD. A minimum GPA in all work including transfer credits.
- Successful completion of 75 percent of all work attempted.

Required Environmental Science Core (24 cr)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 1140—Geology and Earth Systems, LE CAT4</td>
<td>4 cr</td>
</tr>
<tr>
<td>ESCI 2210—Science and Management of Environmental Systems</td>
<td>4 cr</td>
</tr>
<tr>
<td>ESCI 3101—Nonrenewable Resources (4 cr)</td>
<td></td>
</tr>
<tr>
<td>ESCI 3102—Renewable Resources (4 cr)</td>
<td></td>
</tr>
<tr>
<td>ESCI 4101—Pollution and Technology (4 cr)</td>
<td></td>
</tr>
<tr>
<td>ESCI 4102—Environmental Assessment (4 cr)</td>
<td></td>
</tr>
</tbody>
</table>

Required Courses From Other Programs (56–57 cr)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1011—General Biology I, LE CAT4</td>
<td>5 cr</td>
</tr>
<tr>
<td>BIOL 1012—General Biology II</td>
<td>5 cr</td>
</tr>
<tr>
<td>BIOL 2801—General Ecology</td>
<td>3 cr</td>
</tr>
<tr>
<td>BIOL 2802—Ecology Laboratory</td>
<td>2 cr</td>
</tr>
<tr>
<td>CHEM 2212—Environmental Chemistry</td>
<td>4 cr</td>
</tr>
<tr>
<td>MATH 1297—Calculus I</td>
<td>5 cr</td>
</tr>
<tr>
<td>PHYS 1011—General Physics I, LE CAT4</td>
<td>4 cr</td>
</tr>
<tr>
<td>PHYS 1012—General Physics II</td>
<td>4 cr</td>
</tr>
<tr>
<td>CHEM 1151—General Chemistry I, LE CAT4</td>
<td>5 cr</td>
</tr>
<tr>
<td>or CHEM 1161—Honors: General Chemistry I, LE CAT4</td>
<td>5 cr</td>
</tr>
<tr>
<td>CHEM 1152—General Chemistry II</td>
<td>5 cr</td>
</tr>
<tr>
<td>or CHEM 1162—Honors: General Chemistry II, H</td>
<td>5 cr</td>
</tr>
<tr>
<td>ECON 1022—Principles of Economics: Macro, LE CAT6</td>
<td>3 cr</td>
</tr>
<tr>
<td>or ECON 1023—Principles of Economics: Micro, LE CAT6</td>
<td>3 cr</td>
</tr>
<tr>
<td>GEOL 3100—Earth’s Climate and Environment: Past and Future</td>
<td>3 cr</td>
</tr>
<tr>
<td>or GEOG 3401—Weather and Climate</td>
<td>3 cr</td>
</tr>
<tr>
<td>MATH 1290—Calculus for the Natural Sciences, LE CAT2</td>
<td>5 cr</td>
</tr>
<tr>
<td>or MATH 1296—Calculus I, LE CAT2</td>
<td>5 cr</td>
</tr>
<tr>
<td>STAT 2411—Statistical Methods, LE CAT2</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Water Science Electives (8–11 cr)

Must include three courses, at least one course each from Group A and B. Courses used to satisfy a water science elective may not be used to satisfy a concentration elective. At least one course used to fill the water science electives or the concentration electives must have a laboratory or field component.

Take 3 or more course(s) totaling 8–11 credit(s) from the following:

Group A Groundwater

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 4240—Physical Hydrogeology</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOL 4250—Environmental Hydrogeology</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOL 5710—Aqueous Geochemistry/Chemical Hydrogeology</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Group B Surface Water

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 5805—Fisheries Ecology</td>
<td>3 cr</td>
</tr>
<tr>
<td>BIOL 5833—Stream Ecology</td>
<td>4 cr</td>
</tr>
<tr>
<td>BIOL 5861—Lake Ecology</td>
<td>3 cr</td>
</tr>
<tr>
<td>GEOG 5446—Water Processes and Management</td>
<td>4 cr</td>
</tr>
<tr>
<td>LIM 5004—Field Limnology</td>
<td>2 cr</td>
</tr>
<tr>
<td>LIM 5101—Physical Limnology</td>
<td>3 cr</td>
</tr>
<tr>
<td>LIM 5102—Chemical Limnology</td>
<td>3 cr</td>
</tr>
<tr>
<td>LIM 5103—Geological Limnology</td>
<td>3 cr</td>
</tr>
<tr>
<td>BIOL 5839—Coral Reef Field Studies</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Concentration Electives (10 cr)

Courses can be distributed among the groups in any combination. Discuss with adviser the benefits of breadth (credits in several concentrations) versus depth (credits in a particular concentration).

Take no more than 10 credit(s) from the following:

Climate Processes

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 3401—Weather and Climate</td>
<td>3 cr</td>
</tr>
<tr>
<td>GEOG 3422—Natural Hazards</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOG 5446—Water Processes and Management</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOL 3210—Geomorphology</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOL 4210—Glacial and Quaternary Geology</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOL 5220—Global Climate Change</td>
<td>3 cr</td>
</tr>
<tr>
<td>LIM 5103—Geological Limnology</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Environmental Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 5868—Ecotoxicology</td>
<td>3 cr</td>
</tr>
<tr>
<td>CHE 4612—Hazardous Waste Processing Engineering</td>
<td>3 cr</td>
</tr>
<tr>
<td>CHE 4613—Air Pollution Control</td>
<td>3 cr</td>
</tr>
<tr>
<td>CHEM 2541—Organic Chemistry I</td>
<td>3 cr</td>
</tr>
<tr>
<td>CHEM 2543—Organic Chemistry I Laboratory</td>
<td>1 cr</td>
</tr>
<tr>
<td>CHEM 2542—Organic Chemistry II</td>
<td>3 cr</td>
</tr>
<tr>
<td>CHEM 2544—Organic Chemistry II Laboratory</td>
<td>1 cr</td>
</tr>
<tr>
<td>GEOL 3710—Introduction to Geochemistry</td>
<td>3 cr</td>
</tr>
<tr>
<td>GEOL 5710—Aqueous Geochemistry/Chemical Hydrogeology</td>
<td>3 cr</td>
</tr>
<tr>
<td>LIM 5102—Chemical Limnology</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Global Resources

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 4721—Natural Resource and Energy Economics</td>
<td>3 cr</td>
</tr>
<tr>
<td>ECON 4777—Environmental Economics</td>
<td>3 cr</td>
</tr>
<tr>
<td>GEOG 3461—Geography of Global Resources</td>
<td>3 cr</td>
</tr>
<tr>
<td>GEOG 4451—The Geography of Soils</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOL 4240—Physical Hydrogeology</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOL 4250—Environmental Hydrogeology</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOL 4350—Economic Geology</td>
<td>4 cr</td>
</tr>
</tbody>
</table>
Swenson College of Science and Engineering

Geological Sciences B.A.
Geological Sciences; College of Liberal Arts

Required credits to graduate with this degree: 120.
Required credits within the major: 56 to 57.

Geological sciences is the scientific study of the origin, history, and structure of the Earth. The study of geology requires a broad base of knowledge in related sciences and mathematics.

The B.A. in geological sciences provides an appropriate educational background for work in areas related to environmental studies, land use planning, and other fields requiring sensitivity to Earth systems.

Honors Requirements: To attain departmental honors, students must undertake an independent research project (typically two semesters) and maintain a cumulative overall GPA of 3.00. The research can be part of a UROP, directed research, independent study, or an internship with a faculty member. Students must make a brief oral presentation to the department summarizing their results and produce a research paper (maximum 10 pages).

Admission Requirements
For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements
Requirements for the B.A. in geological sciences include:

- Completion of at least 120 degree credits, including the liberal education program, an approved major for the B.A.
- A second field of study (either a minor or another major).
- Elective credits.
- Degree candidates must complete at least 30 degree credits at UMD. At least 20 of the last 30 degree credits immediately before graduation must be taken at UMD.
- A 2.00 cumulative University of Minnesota grade point average (GPA). Transfer grades and credits outside the University of Minnesota system are not calculated into the University GPA; however, transfer credits are counted as degree credits.
- A 2.00 cumulative GPA in the major(s) and minor(s).
- Advanced writing requirement: WRIT 3150—Advanced Writing: Science or equivalent (3 cr).
- SSP 1000—Introduction to College Learning (1 cr) or CLA 1001—Learning Community Integrative Seminar (1 cr).
- Math courses determined by math placement.

Geology Core Courses (33 cr)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 2110</td>
<td>3 cr</td>
</tr>
<tr>
<td>GEOL 2111</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOL 2120</td>
<td>3 cr</td>
</tr>
<tr>
<td>GEOL 2311</td>
<td>3 cr</td>
</tr>
<tr>
<td>GEOL 2312</td>
<td>3 cr</td>
</tr>
<tr>
<td>GEOL 3420</td>
<td>4 cr</td>
</tr>
<tr>
<td>GEOL 4500</td>
<td>6 cr</td>
</tr>
<tr>
<td>PHYS 5043</td>
<td>3 cr</td>
</tr>
<tr>
<td>PHYS 5541</td>
<td>4 cr</td>
</tr>
<tr>
<td>STAT 5411</td>
<td>3 cr</td>
</tr>
<tr>
<td>SSP 1000</td>
<td>1 cr</td>
</tr>
</tbody>
</table>

Minor Electives

<table>
<thead>
<tr>
<th>Two additional courses for at least four credits from the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 4101—Pollution and Technology (4 cr)</td>
</tr>
<tr>
<td>ESCI Water Science Electives from Environmental Science B.S.</td>
</tr>
<tr>
<td>or ESCI Concentration Electives from Environmental Science B.S.</td>
</tr>
</tbody>
</table>
Advanced Electives

With the exception of GEOL 4110, electives (3xxx and above) are selected from yearly geological sciences offerings. Six credits of limnology courses may be substituted for 3 credits of geological electives. GEOG 4563 and 4564 (5 credit total) may be substituted for 3 credits of geological sciences electives. Take 8 or more credit(s) from the following:

- AST 4110—Observational Astronomy (3 cr)
- GEOF 4451—The Geography of Soils (4 cr)
- GEOG 3000—Geologic Maps (3 cr)
- GEOG 3091—Independent Study (1–2 cr)
- GEOG 3100—Earth’s Climate and Environment: Past and Future (3 cr)
- GEOG 3210—Geomorphology (4 cr)
- GEOG 3710—Introduction to Geochemistry (3 cr)
- GEOG 4210—Glacial and Quaternary Geology (3 cr)
- GEOG 4335—Physical Volcanology (3 cr)
- GEOG 4350—Economic Geology (4 cr)
- GEOG 4480—Tectonics (3 cr)
- GEOG 4805—Environmental Geophysics (4 cr)
- GEOG 4820—Global Geophysics (3 cr)
- GEOG 5091—Geologic Problems (1–2 cr)
- GEOG 5820—Geologic Maps (3 cr)
- GEOG 5891—Independent Study (1–2 cr)

or

Take 15 or more credit(s) from the following:

- GEOL 2110—Earth History (3 cr)
- GEOL 2111—Earth History Laboratory (1 cr)
- GEOL 2120—The Earth’s Dynamic Interior (3 cr)
- GEOL 2311—Mineralogy (4 cr)
- GEOL 2312—Petrology (5 cr)
- GEOL 3420—Sedimentology and Stratigraphy (4 cr)
- GEOL 4450—Structural Geology (5 cr)
- GEOL 4500—Field Geology (6 cr)
- GEOL 1110—Geology and Earth Systems, LE CAT4 (4 cr)
- GEOL 1130—Introduction to Environmental Science, LEIP CAT04 (4 cr)
- GEOL 1610—Oceanography, LE CAT5 (3 cr)
- GEOL 4451—The Geography of Soils (4 cr)
- GEOG 3000—Geologic Maps (3 cr)
- GEOG 3091—Independent Study (1–2 cr)

or

Take 15 or more credit(s) from the following:

- GEOL 2110—Earth History (3 cr)
- GEOL 2111—Earth History Laboratory (1 cr)
- GEOL 2120—The Earth’s Dynamic Interior (3 cr)
- GEOL 2311—Mineralogy (4 cr)
- GEOL 2312—Petrology (5 cr)
- GEOL 3420—Sedimentology and Stratigraphy (4 cr)
- GEOL 4450—Structural Geology (5 cr)
- GEOL 4500—Field Geology (6 cr)
- GEOL 1110—Geology and Earth Systems, LE CAT4 (4 cr)
- GEOL 1130—Introduction to Environmental Science, LEIP CAT04 (4 cr)
- GEOL 1610—Oceanography, LE CAT5 (3 cr)
- GEOL 4451—The Geography of Soils (4 cr)
- GEOG 3000—Geologic Maps (3 cr)
- GEOG 3091—Independent Study (1–2 cr)

Math

Take no more than 1 course(s) from the following:

- MATH 1250—Precalculus Analysis, LE CAT2 (4 cr)
- MATH 1290—Calculus for the Natural Sciences, LE CAT2 (5 cr)
- MATH 1296—Calculus I, LE CAT2 (5 cr)
- STAT 2411—Statistical Methods, LE CAT2 (3 cr)

Geological Sciences B.S.

Geological Sciences

Required credits to graduate with this degree: 120.

Required credits within the major: 77 to 78.

The B.S. degree in geological sciences is designed for students interested in a career in geoscience. The study of geology requires a broad base of knowledge in related sciences (chemistry and physics) and mathematics. In addition, the program includes a solid core of geology courses, including a course in field mapping.

Honors Requirements: To attain departmental honors, students must undertake an independent research project (typically two semesters) and maintain a cumulative overall GPA of 3.00. The research can be part of a UROP, directed research, independent study, or an internship with a faculty member. Students must make a brief oral presentation to the department summarizing their results and produce a research paper (maximum 10 pages) OR give an oral or poster presentation of their research results at a regional or national meeting (e.g., GSA, AGU, SEPM, or similar campus event).

Admission Requirements

For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements

Requirements for the B.S. in geological sciences include:

- Liberal education requirements.
- Advanced writing requirement: WRIT 3150—Advanced Writing: Science (3 cr).
- Minor or double major.

Geology Core Courses (34–35 cr)

- GEOL 2110—Earth History (3 cr)
- GEOL 2111—Earth History Laboratory (1 cr)
- GEOL 2120—The Earth’s Dynamic Interior (3 cr)
- GEOL 2311—Mineralogy (4 cr)
- GEOL 2312—Petrology (5 cr)
- GEOL 3420—Sedimentology and Stratigraphy (4 cr)
- GEOL 4450—Structural Geology (5 cr)
- GEOL 4500—Field Geology (6 cr)
- GEOL 1110—Geology and Earth Systems, LE CAT4 (4 cr)
- GEOL 1130—Introduction to Environmental Science, LEIP CAT04 (4 cr)
- GEOL 1610—Oceanography, LE CAT5 (3 cr)
- GEOL 4451—The Geography of Soils (4 cr)

Advanced Electives

With the exception of GEOL 4110, electives (3xxx and above) are selected from yearly geological sciences offerings. Six credits of limnology courses may be substituted for geological sciences electives.

Take 8 or more credit(s) from the following:

- GEOL 2110—Earth History (3 cr)
- GEOL 2111—Earth History Laboratory (1 cr)
- GEOL 2120—The Earth’s Dynamic Interior (3 cr)
- GEOL 2311—Mineralogy (4 cr)
- GEOL 2312—Petrology (5 cr)
- GEOL 3420—Sedimentology and Stratigraphy (4 cr)
- GEOL 4450—Structural Geology (5 cr)
- GEOL 4500—Field Geology (6 cr)
- GEOL 1110—Geology and Earth Systems, LE CAT4 (4 cr)
- GEOL 1130—Introduction to Environmental Science, LEIP CAT04 (4 cr)
- GEOL 1610—Oceanography, LE CAT5 (3 cr)
- GEOL 4451—The Geography of Soils (4 cr)

Courses From Other Programs

Take one of the following course sequences:

- CHEM 1111—Introduction to General, Organic, and Biological Chemistry I, LE CAT4 (5 cr)
- CHEM 1114—Introduction to General, Organic, and Biological Chemistry II (5 cr)
- CHEM 1115—General Chemistry I, LE CAT4 (5 cr)
- CHEM 1116—Honors: General Chemistry I, LE CAT4, H (5 cr)

Math

Take no more than 1 course(s) from the following:

- MATH 1250—Precalculus Analysis, LE CAT2 (4 cr)
- MATH 1290—Calculus for the Natural Sciences, LE CAT2 (5 cr)
- MATH 1296—Calculus I, LE CAT2 (5 cr)
- STAT 2411—Statistical Methods, LE CAT2 (3 cr)

Degree Programs • Geological Sciences B.S.
Swenson College of Science and Engineering

GEOL 5220—Global Climate Change (3 cr)
GEOL 5260—Fluvial Geomorphology (4 cr)
GEOL 5310—Advanced Petroleum (3 cr)
GEOL 5430—Stratigraphy and Basin Analysis (3 cr)
GEOL 5450—Advanced Structure (3 cr)
GEOL 5710—Aqueous Geochemistry/Chemical Hydrogeology (3 cr)
GEOL 5730—Geochronology (3 cr)
GEOL 5839—Coral Reef Geology (3 cr)

Courses Required From Other Programs (28 cr)
MATH 1296 may be substituted for MATH 1290
MATH 1290—Calculus for the Natural Sciences, LE CAT2 (5 cr)
MATH 1297—Calculus II (5 cr)
PHYS 2011—General Physics I, LE CAT4 (4 cr)
PHYS 2012—General Physics II (4 cr)
Take one of the following course sequences
CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
CHEM 1152—General Chemistry II (5 cr)
or CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
or CHEM 1162—Honors: General Chemistry II, H (5 cr)

Geological Sciences Minor

Geological Sciences
Required credits in this minor: 25 to 27.
The geological sciences minor enhances the student’s understanding of and familiarity with earth materials and processes, and provides valuable background for many environmental careers and applications.

Minor Requirements

Minor Courses
GEOL 2110—Earth History (3 cr)
GEOL 2111—Earth History Laboratory (1 cr)
GEOL 2120—The Earth’s Dynamic Interior (3 cr)
GEOL 2311—Mineralogy (4 cr)
GEOL 3101—Mineralogy and Economic Geology (4 cr)
GEOL 1100—Geology and Earth Systems, LE CAT4 (4 cr)
or GEOL 1130—Introduction to Environmental Science, LEIP CAT04 (4 cr)
or GEOL 1610—Oceanography, LE CAT5 (3 cr)
or GEOG 1414—Physical Geography, LE CAT4 (4 cr)
CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
or CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
or CHEM 1162—Honors: General Chemistry II, H (5 cr)

Electives
Take exactly 1 course(s) from the following:
GEOL 2312—Petrology (5 cr)
GEOL 3420—Sedimentology and Stratigraphy (4 cr)
GEOL 4240—Physical Hydrogeology (4 cr)
GEOL 4250—Environmental Hydrogeology (4 cr)
GEOL 4450—Structural Geology (5 cr)

Industrial Engineering B.S.I.E.

UMD Mechanical/Industrial Engineering
Required credits to graduate with this degree: 128.
Required credits within the major: 128.
The mission of the bachelor of science in industrial engineering program is to deliver a hands-on, laboratory-intensive undergraduate education that provides students with the tools and skills to excel in the profession, as they pursue lifelong learning and make positive contributions to society. With an emphasis on integrated systems and a strategic partnership with Luleå University of Technology in Sweden, the B.S.I.E. program offers unique opportunities for study abroad, undergraduate research, and technical electives to develop an enhanced global perspective.
The educational objectives of the industrial engineering program are to produce graduates who are able to:
1. Solve industrial engineering problems by applying contemporary engineering tools to propose and implement effective solutions.
2. Design, develop, implement, and improve integrated systems that include people, materials, information, equipment, and energy.
3. Contribute as informed, ethical, and responsible members of the engineering profession and society as a whole.
4. Continue lifelong professional development throughout their career.
5. Collaborate and communicate effectively with others as a member or leader of an engineering or multidisciplinary team in an international setting.

Industrial engineering integrates topics from manufacturing, management, service, and traditional design. Industrial engineers are proficient in the design, improvement, and management of complex systems of people, materials, equipment, and energy. They study and adapt product designs and the associated plant facilities to optimize production, while considering economic, technical, and human factors.
The curriculum rounds out the learning experience by providing skills in the mathematical and physical sciences, economics, composition, and humanities and social sciences.
The industrial engineering program is accredited by the Engineering Accreditation Commission (EAC) of Accreditation Board for Engineering and Technology, (ABET).
The program emphasizes manufacturing engineering and engineering management.
The international engineering concentration requires a senior year exchange with the Department of Materials and Manufacturing Engineering at Luleå University of Technology in Sweden and provides students with the opportunity to experience engineering in the global community.
The industrial and systems engineering concentration emphasizes the overall perspective of people and productivity, in any type of system, including manufacturing, service, health care, transportation, communication, and agriculture. The international engineering concentration offers a unique opportunity to study engineering in another culture; space is limited. Courses are taught in English and opportunities for travel and externally-focused projects abound.

Honors Requirements: To graduate with department honors, a student must graduate with a 3.40 GPA, be an active member of Tau Beta Pi or a professional engineering society (ASME, ASSE, IIE, or MSPE), and be nominated by a department faculty member.

Admission Requirements
Students must complete 10 courses before admission to the program.
Freshmen and transfer students are usually admitted to pre-major status before admission to this major.
Admission to the upper division B.S.I.E. program is competitive and based on performance in lower division courses and space availability. A minimum overall GPA of 2.50 is required. A C- or better is required for all program courses. In addition, the student must successfully complete (with grades of C- or above) 75 percent of all courses attempted. Transfer students from outside the University of Minnesota system must have a minimum overall GPA of 2.80 and all transfer credits must be a C or better. An application may be submitted when the student has completed at least 70 percent of the following core course list: CHEM 1151 and WRIT 1120 and ENGR 2015 and ENGR 2110 and IE 1225 and MATH 1296 and MATH 1297 and MATH 3280 and PHYS 2011 and (one or more courses totalling 3—5 credits from the following: CS 1121, CS 1511, CS 2121). Application for admission to upper division must be filed with the department in spring semester of the sophomore year.

For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements
Requirements for the B.S.I.E. include:
- Liberal education requirements
- Advanced writing requirement: WRIT 3130—Advanced Writing: Engineering or WRIT 3150—Advanced Writing: Science or WRIT 3180—Honors: Advanced Writing (3 cr)
- Successful completion (with grades of C- or better or S) of all required courses and of 75 percent of all work attempted. Transfer credits must be completed with a C or better.
- File an upper division application and Academic Progress Audit (APAS). Students who fail to file this form by the time they have completed 75 credits may not be permitted to register.
- Completion of at least 30 degree credits at UMD. At least 20 of the last 30 credits taken immediately before graduation must have been taken at UMD.
- A minimum GPA of 2.50 in all courses taken in the major, including required courses in related fields

Maintenance Standards: Undergraduate students majoring in industrial engineering must maintain a 2.50 GPA overall. One semester with a GPA under 2.00 results in being placed on academic probation in the program. Two semesters with a GPA under 2.00 results in academic dismissal from the B.S.I.E. program, even if the cumulative GPA is above 2.50. If the suspension occurs to an upper division student, they lose their status as a B.S.I.E. candidate and must reapply to upper division after they have demonstrated academic improvement and consulted with their academic adviser and the department head. This policy is in addition to the academic progress policies of SCSE and the University of Minnesota.

Program Sub-plans
Students are required to complete one of the following sub-plans.

Industrial and Systems Engineering Program Sub-plan
The industrial and systems engineering concentration emphasizes the overall perspective of people and productivity in any type of system, including manufacturing, service, health care, transportation, communication, and agriculture. Concentration electives allow students to study systems of interest to them.

One course each from liberal education categories 7, 8, and 9 and one course from 9 or 10 (12 cr); courses from categories 9 and 10 must have different designators.

Final project: Students are required to complete a final team designed project in the capstone design courses EMGT 4110—Engineering Professionalism and Practice and IE 4255—Multidisciplinary Senior Design. Completion of the junior year curriculum is a prerequisite for these courses. IE 4255 requires publication of a final report and a formal presentation to the project sponsors.

Industrial and Systems Engineering Core Courses (55 cr)
Required courses include fundamental material in engineering science, engineering management, industrial engineering, and mechanical engineering. Concepts are delivered in lecture and reinforced in lab experiences.

EMGT 4110—Engineering Professionalism and Practice (2 cr)
ENGR 2015—Statics (3 cr)
ENGR 2026—Dynamics (3 cr)
ENGR 2110—Introduction to Material Science for Engineers (3 cr)
IE 1225—Introduction to Design and Manufacturing Engineering (4 cr)
IE 3115—Operations Research (4 cr)
IE 3122—Materials Engineering Laboratory (2 cr)
IE 3125—Engineering Economic Analysis (3 cr)
IE 3130—Materials Processing Engineering (3 cr)
IE 3140—Human Factors and Ergonomic Design (3 cr)
IE 3222—Occupational Systems Laboratory (2 cr)
IE 4010—Six Sigma Quality Control (3 cr)
IE 4020—Lean Enterprises Management (3 cr)
IE 4115—Facility Planning and Simulation (4 cr)
IE 4222—Systems Integration Laboratory (2 cr)
IE 4230—Systems Integration (3 cr)
IE 4255—Multidisciplinary Senior Design (4 cr)
IE 4993—Industrial Engineering Seminar (1 cr)

Courses From Other Programs (73 cr)
These courses help engineers develop a foundation of mathematics, sciences, economics, statistics, and communication skills.

CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
ECE 2006—Electrical Circuit Analysis (4 cr)
MATH 1296—Calculus I, LE CAT2 (5 cr)
MATH 1297—Calculus II (5 cr)
MATH 3280—Differential Equations with Linear Algebra (4 cr)
PHYS 2011—General Physics I, LE CAT4 (4 cr)
PHYS 2012—General Physics II (4 cr)
STAT 3411—Engineering Statistics (3 cr)
WRIT 1120—College Writing, LE CAT1 (3 cr)
ECON 1022—Principles of Economics: Macro, LE CAT6 (3 cr)
ECON 1023—Principles of Economics: Micro, LE CAT6 (3 cr)
LSBE 1101—The Business Environment, LE CAT8 (3 cr)
ACCT 2001—Principles of Financial Accounting (3 cr)
INTB 3201—International Business (3 cr)
Advanced Writing Requirement
COMP 3130 is preferred
Take exactly 1 course(s) from the following:
WRIT 3130—Advanced Writing: Engineering (3 cr)
WRIT 3150—Advanced Writing: Science (3 cr)
WRIT 3180—Honors: Advanced Writing, H (3 cr)

Computer Science Elective
This course helps the industrial engineer develop proficiency in information systems and data management.
Take 1 or more course(s) totaling 3 or more credit(s) from the following:
CS 1121—Introduction to Programming in Visual BASIC.NET, LE CAT3 (3 cr)
CS 1511—Computer Science I, LE CAT3 (5 cr)
CS 2121—Introduction to Programming in Java, LE CAT3 (3 cr)

Industrial and Systems Engineering Electives
These courses help an industrial engineer develop proficiency in technical areas. (Cannot count credits from other requirement categories.)
Take 6 or more credit(s) from the following:
IE 4495—Special Topics: (Various Titles to be Assigned) (1–4 cr)
IE 5305—Supply Chain Management (3 cr)
IE 5315—Organizational Control Methods (3 cr)
IE 5325—Advanced Engineering Economics (3 cr)
IE 5335—Engineered Products and Services (3 cr)
ME 3111—Fluid Mechanics (3 cr)
or
CHE 3111—Fluid Mechanics (3 cr)

Additional Electives
(Cannot count credits from other requirement categories.)
Take 2 or more course(s) totaling 6 or more credit(s) from the following:
CHE 2111—Material and Energy Balances (3 cr)
CHE 5895—Special Topics: (Various Titles to be Assigned) (1–4 cr)
CS 1521—Computer Science II (5 cr)
ECE 1315—Digital Signal Design (4 cr)
ECE 2111—Linear Systems and Signal Analysis (4 cr)
ECE 2212—Electronics I (4 cr)
ECE 2325—Microcomputer System Design (4 cr)
ECE 3151—Control Systems (3 cr)
ECE 5995—Special Topics: (Various Titles to be Assigned) (1–3 cr)
IE 4196—Cooperative Education (1 cr)
IE 4491—Independent Study (1–4 cr)
IE 4495—Special Topics: (Various Titles to be Assigned) (1–4 cr)
IE 4993—Industrial Engineering Seminar (1 cr)
IE 5305—Supply Chain Management (3 cr)
IE 5315—Organizational Control Methods (3 cr)
IE 5325—Advanced Engineering Economics (3 cr)
IE 5335—Engineered Products and Services (3 cr)
IE 5991—Independent Study in Industrial Engineering (1–4 cr)
MATH 3298—Calculus III (4 cr)
MATH 3355—Discrete Mathematics (4 cr)
ME 3140—System Dynamics and Control (3 cr)
ME 3261—Thermodynamics (3 cr)
ME 4155—Robotics and Controls (4 cr)
ME 4145—CAD/CAM (4 cr)
ME 4175—Machine Design (3 cr)
ME 4245—Machining and Machine Tools (4 cr)
ME 4495—Special Topics: (Various Titles to be Assigned) (1–4 cr)
ME 5315—Nondestructive Evaluation of Engineering Materials (3 cr)
ME 5325—Sustainable Energy System (3 cr)
MGTS 4472—Entrepreneurship (3 cr)
STAT 5411—Analysis of Variance (3 cr)
STAT 5511—Regression Analysis (3 cr)

ME 3111—Fluid Mechanics (3 cr)
or
CHE 3111—Fluid Mechanics (3 cr)

Liberal Education Electives
Engineers need to be well-rounded to best serve society.
Hist/Phil foundations electives: 3 cr/Category 7.
Liberal/Artistic elective I: 3 cr/Category 9.
Liberal/Artistic elective II: 3 cr/Category 9 or 10, must have a different prefix than literary and artistic elective I.

International Engineering Sub-plan
This sub-plan is optional and does not fulfill the sub-plan requirement for this program.
The international engineering concentration offers a unique opportunity to study engineering in another culture; space is limited. Courses are taught in English and opportunities for travel and externally-focused projects abound.
Final Project: Students taking the senior year at Luleå University of Technology must take its equivalent capstone design course.

International Engineering Core Courses (39 cr)
Required courses include fundamental material in engineering science, industrial engineering, and mechanical engineering. Courses in Sweden build on these fundamentals, frequently in the context of significant projects.
ENGR 2015—Statics (3 cr)
ENGR 2016—Mechanics of Materials (3 cr)
ENGR 2026—Dynamics (3 cr)
ENGR 2110—Introduction to Material Science for Engineers (3 cr)
IE 1225—Introduction to Design and Manufacturing Engineering (4 cr)
IE 3115—Operations Research (4 cr)
IE 3122—Materials Engineering Laboratory (2 cr)
IE 3125—Engineering Economic Analysis (3 cr)
IE 3130—Materials Processing Engineering (3 cr)
IE 3140—Human Factors and Ergonomic Design (3 cr)
IE 3222—Occupational Systems Laboratory (2 cr)
IE 4010—Six Sigma Quality Control (3 cr)
IE 4020—Lean Enterprises Management (3 cr)

Courses From Other Programs (40 cr)
These courses help engineers develop a foundation of mathematics, sciences, economics, statistics, and communication skills. International engineering emphasizes the culture, historical perspective, and current events and issues in a foreign setting.
CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
ECE 2006—Electrical Circuit Analysis (4 cr)
MATH 1296—Calculus I, LE CAT2 (5 cr)
MATH 1297—Calculus II (5 cr)
MATH 1298—Calculus III (4 cr)
MATH 3280—Differential Equations with Linear Algebra (4 cr)
PHYS 2011—General Physics I, LE CAT4 (4 cr)
PHYS 2012—General Physics II (4 cr)
STAT 3411—Engineering Statistics (3 cr)
WRIT 1120—College Writing, LE CAT1 (3 cr)
ECON 1022—Principles of Economics: Micro, LE CAT6 (3 cr)

Advanced Writing Requirement (3 cr)
WRIT 3130 is preferred
Take exactly 1 course(s) from the following:
WRIT 3130—Advanced Writing: Engineering (3 cr)
WRIT 3150—Advanced Writing: Science (3 cr)
WRIT 3180—Honors: Advanced Writing, H (3 cr)
Computer Science Elective (3 cr)
This course helps the industrial engineer develop proficiency in information systems and data management.
Take 1 or more course(s) from the following:
CS 1121—Introduction to Programming in Visual BASIC.NET, LE CAT3 (3 cr)
CS 2121—Introduction to Programming in Java, LE CAT3 (3 cr)

Liberal Education Electives (9 cr)
Engineers need to be well-rounded to best serve society. These electives include historical foundations, arts, and humanities.
- Hist/Phil Foundations Electives: 3 cr/Category 7.
- Literary/Artistic Elective I: 3 cr/Category 9.
- Literary/Artistic Elective II: 3 cr/Category 9 or 10, must have a different prefix than literary and artistic elective I.

Courses Taken in Luleå, Sweden (33 cr)
FST 4801—International Engineering Report (2 cr)
FST 1816—Introduction to Scandinavia (LE-8) (3 cr)
Simulation of project systems (4 cr)
Automation (4 cr)
CAD (4 cr)
International manufacturing systems (8 cr)
Approved technical, manufacturing, or business electives (8 cr)

Industrial Engineering Elective
Take 3 or more credit(s) from the following:
ME 3111—Fluid Mechanics (3 cr)
IE 4495—Special Topics: (Various Titles to be Assigned) (1–4 cr)
IE 5305—Supply Chain Management (3 cr)
IE 5315—Organizational Control Methods (3 cr)
IE 5325—Advanced Engineering Economics (3 cr)
IE 5335—Engineered Products and Services (3 cr)

Mathematics B.S.
Mathematics and Statistics
Required credits to graduate with this degree: 120.
Required credits within the major: 51.
The program in mathematics develops competence in mathematical techniques and sharpens mathematical insight. Mathematics is fundamental to solving problems in physics, chemistry, biology, medicine, business, engineering, and technology. The mathematics major prepares students for careers in business, industry, and government and for further graduate studies.

Note: The B.S. in statistics and actuarial science is listed separately.
Honors Requirements: To graduate with department honors, a student must complete the program with an overall and department GPA of 3.50, satisfactorily complete a research project under the guidance of a department faculty member, and convey research results in a public presentation.

Admission Requirements
For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements
Requirements for the B.S. in mathematics include:
- Liberal education requirements.
- Minor or second major from another area of study.
- Advanced writing requirement: WRIT 31xx.

Introduction to Calculus Courses (10 cr)
Calculus I
Take one of the following three Calculus I courses:
MATH 1290—Calculus for the Natural Sciences, LE CAT2 (5 cr)
or MATH 1296—Calculus I, LE CAT2 (5 cr)
or MATH 1596—Honors: Calculus I, LE CAT2, H (5 cr)
Take one of the following two Calculus II courses:
MATH 1297—Calculus II (5 cr)
or MATH 1597—Honors: Calculus II, H (5 cr)

Mathematics Core Courses (20 cr)
Core courses cannot count as electives.
Take the following six courses:
MATH 3280—Differential Equations with Linear Algebra (4 cr)
MATH 3355—Discrete Mathematics (4 cr)
MATH 3941—Undergraduate Colloquium (1 cr)
MATH 4201—Elementary Real Analysis (4 cr)
MATH 4326—Linear Algebra (3 cr)
STAT 3611—Introduction to Probability and Statistics (4 cr)

Required From Other Departments (5 cr)
CS 1511—Computer Science I, LE CAT3 (5 cr)

Electives (16 cr)
Core courses cannot count as electives.
MATH elective courses must be at least 3100.
STAT elective courses must be at least 5000.
At least 10 credits of MATH and/or STAT electives must be 4xxx or above.
At least 6 credits of electives must have MATH prefix and be 4xxx or above.
Only one credit of MATH 3120 may count toward the math major.
MATH 4371 cannot be counted toward the major.

MATH
Take 0–6 credit(s) from the following:
MATH 3xxx

MATH/STAT 4xxx-5xxx
Take 10–16 credit(s) from the following:
MATH 4xxx
MATH 5xxx
STAT 5xxx

Double Majors ONLY
- A student pursuing a second major in statistics and actuarial science cannot apply STAT courses as electives.
- A student with a second major other than statistics and actuarial science may substitute courses from the approved nondepartmental list (below) on a one elective MATH credit for two outside credits exchange basis for up to seven MATH elective credits.

Approved Nondepartmental List:
Take 0–14 credit(s) from the following:
BIOL 5807—Mathematical Ecology (3 cr)
CHE 4301—Chemical Reaction Engineering (3 cr)
CHE 4402—Process Dynamics and Control (3 cr)
CHEM 4641—Physical Chemistry I (3 cr)
Mechanical Engineering B.S.M.E.

UMD Mechanical/Industrial Engineering

Required credits to graduate with this degree: 128.
Required credits within the major: 128.

The mission of the bachelor of science in mechanical engineering program is to deliver a laboratory-intensive, undergraduate mechanical engineering education that provides students with the tools and skills to excel in the engineering profession, as they pursue lifelong learning and make positive contributions to society. The student learning experience offers unique opportunities for study abroad, undergraduate research, and electives outside of mechanical engineering to develop an enhanced global perspective.

Mechanical engineering program educational objectives:

B.S.M.E. graduates will

1. Solve mechanical engineering problems by applying contemporary engineering tools to propose and implement effective solutions.
2. Design, develop, implement and improve thermal and mechanical systems.
3. Contribute as informed, ethical, and responsible members of the engineering profession and society as a whole.
4. Continue lifelong professional development throughout their career.
5. Collaborate and communicate effectively with others as a member or leader of an engineering or multidisciplinary team in an international setting.

The B.S.M.E. program integrates topics from chemistry, physics, advanced mathematics and statistics, and core engineering science to prepare graduates to work professionally in both thermal and mechanical systems, from design, development, manufacture, and use of products involving mechanical and thermal elements.

The program emphasizes the production engineering approach to mechanical and thermal systems design and development. Upper division courses provide students with a strong understanding of mechanical and thermal systems, and the skills to design, develop, and implement these systems. The mechanical engineering program is accredited by the Engineering Accreditation Commission (EAC) of ABET, Inc.

Mechanical engineering graduates are qualified for employment in a wide variety of industries including design, manufacturing, materials, aerospace, transportation, natural resources, and energy. Graduates may pursue assignments in design, development, manufacturing, operations, project engineering, or sales, and frequently move into engineering management. They are also well qualified to continue with graduate education.

Students in the B.S.M.E. program have the opportunity to put their design and entrepreneurial skills to use in ASME design competitions, projects sponsored by regional companies, and research projects in the Undergraduate Research Opportunities Program.

Program Areas of Emphasis

Mathematics includes a wide variety of areas in which students can specialize: traditional mathematics (preparation for Graduate School), applied analysis, computational mathematics, discrete mathematics, and mathematics education. Although no area is required for the MATH major, students are encouraged to work with their advisers to develop a coherent major plan. See the Department of Mathematics and Statistics Web page, www.d.umn.edu/math, for descriptions of elective course groups.

Mathematics Minor

Mathematics and Statistics

Required credits in this minor: 24.

The minor in mathematics is based on the completion of the traditional core of calculus, differential equations, and elementary linear algebra commonly required of undergraduate physical science, engineering, and mathematics degrees. Additional, more advanced, elective classes are required, as well. The minor in mathematics certifies a student’s quantitative, problem-solving, and critical thinking skills.

Minor Requirements

Core Courses (14 cr)

Calculus I
MATH 1296—Calculus I, LE CAT2 (5 cr)
or MATH 1596—Honors: Calculus I, LE CAT2, H (5 cr)

Calculus II
MATH 1297—Calculus II (5 cr)
or MATH 1597—Honors: Calculus II, H (5 cr)

Core Course
MATH 3280—Differential Equations with Linear Algebra (4 cr)

Electives (10 cr)

Elective credits must be from MATH and/or STAT courses above 3xxx. Only one of STAT 3411 and STAT 3611 may count toward the math minor.

Chemistry

CHEM 4642—Physical Chemistry II (3 cr)

Computer Science

CS 4511—Computability and Complexity (4 cr)
CS 4521—Algorithms and Data Structures (4 cr)
CS 5541—Artificial Intelligence (4 cr)
CS 5721—Computer Graphics (4 cr)
CS 5751—Introduction to Machine Learning (4 cr)

Electrical and Computer Engineering

ECE 4521—Algorithms and Data Structures (4 cr)
ECE 4511—Computability and Complexity (4 cr)
ECE 5151—Digital Control System Design (3 cr)
ECE 5541—Artificial Intelligence (4 cr)
ECE 5741—Digital Signal Processing (3 cr)
ECE 5751—Introduction to Machine Learning (4 cr)

Geology

GEOL 4240—Physical Hydrogeology (4 cr)

Physics

PHYS 4001—Classical Mechanics (4 cr)
PHYS 4011—Electromagnetic Theory (4 cr)
PHYS 4021—Quantum Physics II (4 cr)
PHYS 4031—Thermal and Statistical Physics (4 cr)
PHYS 5052—Computational Methods in Physics (3 cr)
PHYS 5501—Advanced Classical Mechanics (3 cr)
PHYS 5541—Fluid Dynamics (3 cr)

Mathematics Minor

Mathematics and Statistics

Required credits in this minor: 24.

The minor in mathematics is based on the completion of the traditional core of calculus, differential equations, and elementary linear algebra commonly required of undergraduate physical science, engineering, and mathematics degrees. Additional, more advanced, elective classes are required, as well. The minor in mathematics certifies a student’s quantitative, problem-solving, and critical thinking skills.

Minor Requirements

Core Courses (14 cr)

Calculus I
MATH 1296—Calculus I, LE CAT2 (5 cr)
or MATH 1596—Honors: Calculus I, LE CAT2, H (5 cr)

Calculus II
MATH 1297—Calculus II (5 cr)
or MATH 1597—Honors: Calculus II, H (5 cr)

Core Course
MATH 3280—Differential Equations with Linear Algebra (4 cr)

Electives (10 cr)

Elective credits must be from MATH and/or STAT courses above 3xxx. Only one of STAT 3411 and STAT 3611 may count toward the math minor.
Honors Requirements: To graduate with department honors, a student must have a 3.40 GPA, be an active member of Tau Beta Pi or a professional engineering society (ASME, ASSE, IIE, or MSPE), and be nominated by a department faculty member.

Admission Requirements

Students must complete 10 courses before admission to the program.

- Freshmen and transfer students are usually admitted to pre-major status before admission to this major.
- Admission to the upper division B.S.M.E. program is competitive and based on performance in lower division courses and space availability. A minimum overall GPA of 2.50 is required. A C- or better is required in all program courses. In addition, the student must successfully complete (with grades of C- or above) 75 percent of all courses attempted. Transfer students from outside the University of Minnesota system must have a minimum overall GPA of 2.80 and all transfer credits must be a C or better. An application may be submitted when the student has completed at least 70 percent of the following core course list: CHEM 1151, ENGR 2015, ENGR 2110, IE 1225 or ENGR 1210, MATH 1296, MATH 1297, MATH 3280, PHYS 2011, WRIT 1120, and (one course from the following: CS 1121, CS 1511, CS 2121).
- Application for admission to the upper division must be filed with the department in spring semester of the sophomore year.
- For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements

Requirements for the B.S.M.E. include:

- Liberal education requirements
- Advanced writing requirement: WRIT 3130—Advanced Writing: Engineering or WRIT 3150—Advanced Writing: Science or WRIT 3180 Honors: Advanced Writing (3 cr)
- Completion of at least 30 degree credits at UMD. At least 20 of the last 30 degree credits taken immediately before graduation must be taken at UMD.
- Successful completion (with grades of C- or better or S) of all required courses and 75 percent of all work attempted.
- Major requirements: a minimum GPA of 2.50 in all courses taken in the major, including required courses in related fields.
- Admission to upper division by submitting an application and APAS form. Students who fail to file these forms by the time they have completed 75 credits may not be permitted to register.

Maintenance Standards: Undergraduate students majoring in mechanical engineering must maintain a 2.50 GPA overall. One semester with a GPA under 2.00 results in being placed on academic probation in the program. Two semesters with a GPA under 2.00 results in academic dismissal from the B.S.M.E. program, even if the cumulative GPA is above 2.50. If the suspension occurs to an upper division student, that student loses their status as a B.S.M.E. candidate and will have to reapply to the upper division after they have demonstrated academic improvement and consulted with their academic adviser and the department head. This policy is in addition to the academic progress policies of CSE and the University of Minnesota.

B.S.M.E Core Courses (57 cr)

Courses include fundamental material in engineering management, engineering science, industrial engineering, and mechanical engineering. Concepts are delivered in lecture and reinforced in lab experiences. Students are required to complete a final team design project in the capstone design courses EMGT 4110 and ME 4255. Completion of the junior year curriculum is a prerequisite for these courses. ME 4255 requires a final report and a formal presentation to the project sponsors.

- EMGT 4110—Engineering Professionalism and Practice (2 cr)
- ENGR 2015—Statics (3 cr)
- ENGR 2016—Mechanics of Materials (3 cr)
- ENGR 2026—Dynamics (3 cr)
- ENGR 2110—Introduction to Material Science for Engineers (3 cr)
- IE 1225—Introduction to Design and Manufacturing Engineering (4 cr)
- IE 3122—Materials Engineering Laboratory (2 cr)
- IE 3125—Engineering Economic Analysis (3 cr)
- IE 3130—Materials Processing Engineering (3 cr)
- IE 4993—Industrial Engineering Seminar (1 cr)
- ME 3111—Fluid Mechanics (3 cr)
- ME 3140—System Dynamics and Control (3 cr)
- ME 3211—Thermodynamics (3 cr)
- ME 3222—Controls and Kinematics Laboratory (2 cr)
- ME 3230—Kinematics and Mechatronics (3 cr)
- ME 4122—Heat Transfer, Thermodynamics and Fluid Mechanics Laboratory (2 cr)
- ME 4145—CAD/CAM (4 cr)
- ME 4175—Machine Design (3 cr)
- ME 4255—Multidisciplinary Senior Design (4 cr)
- ME 4112—Heat and Mass Transfer (3 cr)
- or CHE 3112—Heat and Mass Transfer (3 cr)

Courses From Other Programs

These courses help engineers develop a foundation of mathematics, sciences, economics, statistics, and communication skills.

- CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
- ECE 2006—Electrical Circuit Analysis (4 cr)
- MATH 1296—Calculus I, LE CAT2 (5 cr)
- MATH 1297—Calculus II (5 cr)
- MATH 3280—Differential Equations with Linear Algebra (4 cr)
- MATH 3298—Calculus III (4 cr)
- PHYS 2011—General Physics I, LE CAT4 (4 cr)
- PHYS 2012—General Physics II (4 cr)
- STAT 3411—Engineering Statistics (3 cr)
- WRIT 1120—College Writing, LE CAT1 (3 cr)
- ECON 1023—Principles of Economics: Micro, LE CAT6 (3 cr)
- or ECON 1023—Principles of Economics: Macro, LE CAT6 (3 cr)

Advanced Writing Requirement

WRIT 3130 is preferred

- Take exactly 1 course(s) from the following:
 - WRIT 3130—Advanced Writing: Engineering (3 cr)
 - WRIT 3150—Advanced Writing: Science (3 cr)
 - WRIT 3180—Honors: Advanced Writing, H (3 cr)

Computer Science Elective

- Take 1 or more course(s) totaling 3 or more credit(s) from the following:
 - CS 1121—Introduction to Programming in Visual BASIC.NET, LE CAT3 (3 cr)
 - CS 1511—Computer Science I, LE CAT3 (3 cr)
 - CS 2121—Introduction to Programming in Java, LE CAT3 (3 cr)
Mechanical Engineering Electives
These courses help a mechanical engineer develop skills in a particular technical area.

Take 3 or more credits from the following:
- ME 4135—Robotics and Controls (4 cr)
- ME 4245—Machining and Machine Tools (4 cr)
- ME 4495—Special Topics: (Various Titles to be Assigned) (1–4 cr)
- ME 5305—Computational Fluid Dynamics (3 cr)
- ME 5315—Nondestructive Evaluation of Engineering Materials (3 cr)
- ME 5325—Sustainable Energy System (3 cr)
- ME 5335—Introduction to Finite Element Analysis (3 cr)

Mechanical Engineering Electives
Take 2 or more course(s) totaling 6 or more credit(s) from the following:
- CHE 4111—Separations (3 cr)
- CHE 4301—Chemical Reaction Engineering (3 cr)
- CHE 4613—Air Pollution Control (3 cr)
- CHE 4621—Particle Technology (3 cr)
- CHE 5022—Transport Processes in Wells and Pipelines (3 cr)
- CHE 4613—Air Pollution Control (3 cr)
- CHE 4301—Chemical Reaction Engineering (3 cr)
- CHE 4111—Separations (3 cr)
- CHE 3611—Introduction to Solid-State Semiconductors (3 cr)
- CHE 4501—Power Systems (4 cr)
- CHE 5995—Special Topics: (Various Titles to be Assigned) (1–3 cr)
- IE 4010—Six Sigma Quality Control (3 cr)
- IE 4020—Lean Enterprises Management (3 cr)
- IE 4495—Special Topics: (Various Titles to be Assigned) (1–4 cr)
- IE 4993—Industrial Engineering Seminar (1 cr)
- IE 5325—Advanced Engineering Economics (3 cr)
- ME 4135—Robotics and Controls (4 cr)
- ME 4196—Cooperative Education (1 cr)
- ME 4245—Machining and Machine Tools (4 cr)
- ME 4491—Independent Study in Mechanical Engineering (1–4 cr)
- ME 5305—Computational Fluid Dynamics (3 cr)
- ME 5315—Nondestructive Evaluation of Engineering Materials (3 cr)
- ME 5325—Sustainable Energy System (3 cr)
- ME 5991—Independent Study in Mechanical Engineering (1–4 cr)
- MGTS 4472—Entrepreneurship (3 cr)
- PHYS 2021—Relativity and Quantum Physics (4 cr)
- PHYS 4021—Quantum Physics II (4 cr)
- PHYS 4031—Thermal and Statistical Physics (4 cr)

Liberal Education Electives
Engineers need to be well-rounded to best serve society. These electives include historical foundations, contemporary social issues, and arts and humanities:

- Hist/phil foundations elective: 3 cr/Category 7.
- Contemp social issues elective: 3 cr/Category 8.
- Literary/artistic elective I: 3 cr/Cat 9 or 10, must have a different prefix than literary and artistic elective I.

Physics B.A.

Physics; College of Liberal Arts
Required credits to graduate with this degree: 120.
Required credits within the major: 49.

The B.A. in physics is a liberal arts degree that allows considerable freedom in the planning of upper level courses and can easily be combined with other majors and interests. The physics courses emphasize conceptual foundations, problem-solving skills, and experimental techniques.

Honors Requirements: To graduate with honors, students must participate in the department honors program, complete a research project, and maintain a GPA above 3.00. They are also expected to attend department colloquia. Interested students should contact the physics honors program coordinator.

Admission Requirements
For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements
Requirements for the B.A. in physics include:

- Completion of at least 120 degree credits, including the liberal education program, an approved major for the B.A.
- A second field of study (either a minor or another major).
- Elective credits.
- Degree candidates must complete at least 30 degree credits at UMD. At least 20 of the last 30 degree credits immediately before graduation must be taken at UMD.
- A 2.00 cumulative University of Minnesota grade point average (GPA). Transfer grades and credits outside the University of Minnesota system are not calculated into the University GPA; however, transfer credits are counted as degree credits.
- A 2.00 cumulative GPA in the major(s) and minor(s).
- Advanced writing requirement: WRIT 3150—Advanced Writing: Science (3 cr).
- SSP 1000—Introduction to College Learning (1 cr) or CLA 1001—Learning Community Integrative Seminar (1 cr).

Students interested in teaching 9–12 physics may enroll concurrently in secondary licensure requirements in the Department of Education and apply for admission to the Secondary Teacher Education Program.

Core Courses
The department also recommends the supplementary courses:
- PHYS 2111 and PHYS 2112.
- PHYS 1021—Exploring Current Topics in Physics (1 cr)
- PHYS 2111—General Physics I, LE CAT4 (4 cr)
- PHYS 2112—General Physics II (4 cr)
- PHYS 2121—Relativity and Quantum Physics (4 cr)
- PHYS 2122—Classical Physics (4 cr)
- PHYS 2133—Classical and Quantum Physics Lab (2 cr)

Electives
Take 12 or more credit(s) from the following:
- AST 4110—Observational Astronomy (3 cr)
- LIM 5101—Physical Limnology (3 cr)
- PHYS 3061—Instrumentation (3 cr)
- PHYS 4001—Classical Mechanics (4 cr)
- PHYS 4011—Electromagnetic Theory (4 cr)
- PHYS 4021—Quantum Physics II (4 cr)
Degree Programs • Applied Physics B.S.

Physics B.S.

Physics

Required credits to graduate with this degree: 120.

Required credits within the major: 68 to 70.

The B.S. in physics is primarily for students planning to work toward an advanced degree in physics or a related area. The physics courses emphasize conceptual foundations, problem-solving skills, and experimental techniques.

Students participate in research focused primarily on theoretical physics, instrumentation, experimental solid state and high energy physics, and physical oceanography. The department also offers courses required for professional and pre-professional programs such as engineering and medicine.

Honors Requirements: To graduate with honors, students must participate in the department honors program, complete a research project, and maintain a GPA above 3.00. They are also expected to attend department colloquia. Interested students should contact the physics honors program coordinator.

Admission Requirements

For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements

Requirements for the B.S. in physics include:

• Liberal education requirements
• Advanced writing requirement: WRIT 3150—Advanced Writing: Science (3)
• A minor or a second major in a different program

The first math course is determined by math placement exam. The sample plan presupposes placement into MATH 1296. Courses numbered above 3xxx will be offered in alternate years only. Some courses suggested in the sample plans in the junior and senior years may need to be switched to match the course offerings.

Students interested in teaching 9–12 physics may enroll concurrently in the Department of Education and apply for admission to the Secondary Teacher Education Program.

Core Courses

The department also recommends the supplementary courses PHYS 2111 and PHYS 2112.

- PHYS 1021—Exploring Current Topics in Physics (1 cr)
- PHYS 2011—General Physics I, LE CAT4 (4 cr)
- PHYS 2021—General Physics II (4 cr)
- PHYS 2022—Relativity and Quantum Physics (4 cr)
- PHYS 2033—Classical and Quantum Physics Lab (2 cr)
- PHYS 3061—Instrumentation (3 cr)
- PHYS 4011—Electromagnetic Theory (4 cr)
- PHYS 4021—Quantum Physics II (4 cr)
- PHYS 4031—Thermal and Statistical Physics (4 cr)
- PHYS 5090—Physics Seminar (1 cr)
- PHYS 5091—Physics Lab (1 cr)

Required Courses From Other Programs

MATH 1296—Calculus I, LE CAT2 (5 cr)
MATH 1297—Calculus II (5 cr)
MATH 3280—Differential Equations with Linear Algebra (4 cr)
MATH 3298—Calculus III (4 cr)

CHEM 1151—General Chemistry I, LE CAT4 (5 cr)
CHEM 1161—Honors: General Chemistry I, LE CAT4, H (5 cr)
CHEM 1311—Computer Science I, LE CAT3 (5 cr)
CHEM 1312—Introduction to Programming in FORTRAN, LE CAT3 (3 cr)

Applied Physics B.S.

Physics

Required credits to graduate with this degree: 120.

Required credits within the major: 75 to 77.

The B.S. in applied physics is primarily for students planning to work in industry. The physics courses emphasize conceptual foundation, problem-solving skills, and experimental and computational techniques.

Honors Requirements: To graduate with honors, students must participate in the department honors program, complete a research project, and maintain a GPA above 3.00. They are also expected to attend department colloquia. Interested students should contact the physics honors program coordinator.

Admission Requirements

For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements

Requirements for the B.S. in applied physics include:

• Liberal education requirements
• Advanced writing requirement: WRIT 3150—Advanced Writing: Science (3)
• A minor or a second major in a different program

The first math course is determined by math placement exam. The sample plan presupposes placement into MATH 1296. Courses numbered above 3xxx will be offered in alternate years only. Some courses suggested in the sample plan for the junior and senior years may need to be switched to match the course offerings.

Core Courses

The department also recommends the supplementary courses PHYS 2111 and PHYS 2112.

- PHYS 1011—Exploring Current Topics in Physics (1 cr)
- PHYS 2011—General Physics I, LE CAT4 (4 cr)
- PHYS 2021—General Physics II (4 cr)
- PHYS 2022—Relativity and Quantum Physics (4 cr)
- PHYS 2033—Classical and Quantum Physics Lab (2 cr)
- PHYS 3061—Instrumentation (3 cr)
- PHYS 4011—Electromagnetic Theory (4 cr)
- PHYS 4021—Quantum Physics II (4 cr)
- PHYS 4031—Thermal and Statistical Physics (4 cr)
PHYS 2012—General Physics II (4 cr)
PHYS 2021—Relativity and Quantum Physics (4 cr)
PHYS 2022—Classical Physics (4 cr)
PHYS 2033—Classical and Quantum Physics Lab (2 cr)
PHYS 3061—Instrumentation (3 cr)
PHYS 5061—Experimental Methods (3 cr)
PHYS 5090—Physics Seminar (1 cr)
PHYS 5052—Computational Methods in Physics (3 cr)
or PHYS 5053—Data Analysis Methods in Physics (3 cr)

Electives
Take 5 or more credit(s) from the following:
PHYS 4001—Classical Mechanics (4 cr)
PHYS 4011—Electromagnetic Theory (4 cr)
PHYS 4021—Quantum Physics II (4 cr)
PHYS 4031—Thermal and Statistical Physics (4 cr)

Technical Electives
The computational course not selected in Core Courses may be used as a technical elective. Engineering courses approved by the department may also be used. Take 9 or more credit(s) from the following:
AST 4110—Observational Astronomy (3 cr)
LIM 5101—Physical Limnology (3 cr)
PHYS 5361—Astrophysics (3 cr)
or PHYS 5561—Astrophysics (3 cr)

Courses From Other Programs
Two semesters of chemistry are recommended.

Statistics and Actuarial Science B.S.

Mathematics and Statistics
Required credits to graduate with this degree: 120.
Required credits within the major: 50 to 51.
The science of statistics is concerned with generating and analyzing data. Actuarial science applies statistical methods to assess risk in the insurance and financial industries. The statistics and actuarial science major trains students for careers in a wide variety of fields from banking and government to health care. Advisers have information on the national actuarial examinations.

Honors Requirements: To graduate with department honors, a student must complete the program with an overall and department GPA of 3.50, satisfactorily complete a research project under the guidance of a faculty member, and convey research results in a public presentation.

Admission Requirements
For information about UMD admission requirements, visit the UMD Admissions Web site.

Program Requirements
Requirements for the B.S. in statistics and actuarial science include:
- Liberal education requirements.
- Advanced writing requirement: WRIT 31xx.
- A minor in an area other than mathematics or a second major.

Introduction to Calculus Courses (10 cr)

Calculus I
Take one of the following Calculus I courses:
MATH 1290—Calculus for the Natural Sciences, LE CAT2 (5 cr)
or
MATH 1296—Calculus I, LE CAT2 (5 cr)
or
MATH 1596—Honors: Calculus I, LE CAT2, H (5 cr)

Calculus II
Take one of the following Calculus II courses:
MATH 1297—Calculus II (5 cr)
or
MATH 1597—Honors: Calculus II, H (5 cr)

Statistics and Actuarial Science Core Courses (40–41 cr)
CS 1511—Computer Science I, LE CAT3 (5 cr)
MATH 3298—Calculus III (4 cr)
MATH 3355—Discrete Mathematics (4 cr)
MATH 3280—Differential Equations with Linear Algebra (4 cr)
MATH 3941—Undergraduate Colloquium (1 cr)
STAT 3611—Introduction to Probability and Statistics (4 cr)
STAT 5511—Regression Analysis (3 cr)
STAT 5531—Probability Models (4 cr)
STAT 5571—Probability (4 cr)
STAT 5572—Statistical Inference (4 cr)

Take one of the following two courses:
MATH 4201—Elementary Real Analysis (4 cr)
or
MATH 4326—Linear Algebra (3 cr)