Twin Cities Campus
Aerospace Engineering and Mechanics M.S.
Aerospace Engineering & Mechanics
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Director of Graduate Studies, Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union Street S.E., Minneapolis, MN 55455 (612-625-8000; fax: 612-626-1558)
Email: aem-dgs@umn.edu
Website: http://www.aem.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The Department of Aerospace Engineering and Mechanics offers M.S. and Ph.D. degrees. The graduate programs emphasize engineering sciences that are basic to fluid mechanics, aerospace systems, and solid mechanics. Theoretical, analytical, experimental, and computational aspects of these fields are covered by the courses and research opportunities offered by the department.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.20.

A four-year B.S. degree in an engineering, basic science, or mathematics program is required. Admission depends primarily on the applicant's undergraduate record and letters of recommendation.

Special Application Requirements:
GRE scores are not required but are strongly recommended for students applying for graduate fellowships. In all cases, these test scores are taken into account if provided. Students are admitted fall semester only. Only under unusual circumstances are students allowed to begin their studies at another time during the academic year.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 14 to 24 major credits and 6 to 16 credits outside the major. The final exam is oral.

Plan C: Plan C requires 14 to 24 major credits and 6 to 16 credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 2.80 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

This program emphasizes coursework in engineering sciences that are basic to this field: fluid mechanics, aerospace systems, and solid mechanics. Options include coursework in aerodynamics and aerospace systems, dynamical systems, material properties, and fluid and solid behavior.

The M.S. in Aerospace Engineering and Mechanics requires 30 credits and is offered under three plans. Plan A (thesis) requires 14 major credits, 6 credits outside the major, and 10 thesis credits. Plan B (project) and Plan C (coursework) require a minimum of 14 major credits and a minimum of 6 credits outside the major. The Plan B option requires completion of the 3-credit project course, AEM 8880. The remaining course credits may be taken in the major field or any supporting field.

For all plans, at least 12 of the major field credits must be at the 5xxx or 8xxx level. Degree plans must include at least one sequence of 5xxx or 8xxx courses in aerospace engineering and mechanics, and no more than 8 credits of 4xxx courses. If seminar credits are used to meet the 30-credit requirement, they must be in 1-credit modules and AEM 8000 may only be used once.
Twin Cities Campus
Aerospace Engineering and Mechanics Minor
Aerospace Engineering & Mechanics
College of Science and Engineering

Contact Information:
Director of Graduate Studies, Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union Street S.E., Minneapolis, MN 55455 (612-625-8000; fax: 612-626-1558)
Email: aem-dgs@aem.umn.edu
Website: http://www.aem.umn.edu

• Program Type: Graduate minor related to major
• Requirements for this program are current for Fall 2014
• Length of program in credits (Masters): 6
• Length of program in credits (Doctorate): 12
• This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The Department of Aerospace Engineering and Mechanics offers M.S. and Ph.D. degrees in aerospace engineering and mechanics. The graduate programs emphasize engineering sciences that are basic to fluid mechanics, aerospace systems, and solid mechanics. Theoretical, analytical, experimental, and computational aspects of these fields are covered by the courses and research opportunities offered by the department.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A four-year B.S. degree in an engineering, basic science, or mathematics program is required. Admission depends primarily on the applicant's undergraduate record and letters of recommendation.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

Minor Requirements for Ph.D. Degree Students Majoring in Other Fields: At least 12 credits in aerospace engineering and mechanics are required, including at least one sequence of two 5xxx or 8xxx courses.

Minor Requirements for Master's Degree Students Majoring in Other Fields: At least 6 credits in aerospace engineering and mechanics are required, including one sequence of two 5xxx or 8xxx courses.

The two-course sequence must be in one of the following research areas: fluids, solids, dynamics, controls, or computational fluid dynamics.

Courses cross listed with AEM courses must be registered for under the AEM course designation to be counted towards a minor.
Twin Cities Campus
Aerospace Engineering and Mechanics Ph.D.
Aerospace Engineering & Mechanics
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Director of Graduate Studies, Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union Street S.E., Minneapolis, MN 55455 (612-625-8000; fax: 612-626-1558)
Email: aem-dgs@umn.edu
Website: http://www.aem.umn.edu

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 66
- This program does not require summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The Department of Aerospace Engineering and Mechanics offers a Ph.D. degree in aerospace engineering and mechanics. The Ph.D. program emphasizes engineering sciences that are basic to fluid mechanics, aerospace systems, and solid mechanics. Theoretical, analytical, experimental, and computational aspects of these fields are covered by the courses and research opportunities offered by the department.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.20.

A four-year B.S. degree in an engineering, basic science, or mathematics program is required.

Other requirements to be completed before admission:
Admission depends primarily on the applicant's undergraduate record, personal statement, and letters of recommendation.

Special Application Requirements:
GRE scores are not required but are strongly recommended for students applying for graduate fellowships. In all cases, these test scores are taken into account if provided. Students are admitted fall semester only. Only under unusual circumstances are students allowed to begin their studies at another time during the academic year.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements
12 to 30 credits are required in the major.
12 to 30 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.0 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

The Ph.D. program emphasizes coursework and research in engineering sciences that are basic to this field. Options include coursework and research in aerodynamics and aerospace systems, dynamical systems, material properties, and fluid and solid behavior.

The Ph.D. requires about two years of coursework, but the heart of the program is the student's thesis research. The program must include a minimum of 42 credits of approved courses and four semesters of colloquium attendance. Of the 42 credits, a minimum of 12 credits must be in AEM courses at the 5xxx or 8xxx level, and a minimum of 12 credits outside the major are required. The remaining 18 course credits may be taken in the major or in any supporting field. Degree plans must include at least one sequence of 5xxx or 8xxx level courses in aerospace engineering and mechanics. No more than 8 credits of 4xxx level courses and no more than 13 credits taken as S/N are allowed. If seminar credits are used to meet the 42-credit requirement, they must be in 1-credit modules and AEM 8000 may only be used once.

The first year of the Ph.D. program is similar to the master's program and most Ph.D. students receive the master's degree. The second year is devoted to more advanced courses and beginning research. Subsequent years include some coursework with increased focus on research. The time required to complete a research project varies, but most students finish the Ph.D. within five years after the bachelor's degree.
Twin Cities Campus
Astrophysics M.S.
Astrophysics, Minnesota Institute for
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Minnesota Institute for Astrophysics, 356 Physics, 116 Church Street S.E., Minneapolis, MN 55455 (612-624-4811; fax: 612-626-2029)
Email: grad-rec@astro.umn.edu
Website: http://www.astro.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Astrophysics is the study of the universe and its constituent parts. The department conducts research in observational, theoretical, and computational astrophysics, as well as instrument development. The main research areas include minor planetary bodies, solar system properties, dynamics of normal and active galaxies, stellar evolution, interaction of stars with their environments, the interstellar medium, astrophysical magnetohydrodynamics, and galactic and cosmological structure. Observational research includes activities that cover X-ray, ultraviolet, optical, infrared, and radio wavelengths. Extensive research programs in space physics, nucleosynthesis, and the elementary particle-cosmology interface are also carried out in interdisciplinary connections with the graduate program in physics.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
For major work, an undergraduate degree in astronomy or physics or the equivalent is required. Contact the Graduate Studies Committee for exceptions.

Other requirements to be completed before admission:
A statement of career goals, scores from the GRE General (Aptitude) Test and Subject (Advanced) Test in physics, and three letters of recommendation are required. Applications for financial aid are due January 10. Students are admitted fall semester only.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements

Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 14 to 24 major credits and 6 to 16 credits outside the major. The final exam is oral.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

The master's degree requires a minimum of 30 credits, including one semester of classical physics (PHYS 5011-5012). Plan A (thesis) requires 14 credits in astrophysics, 6 credits outside the major, and 10 thesis credits. Plan B (project) requires a minimum of 14 credits in astrophysics, and a minimum of 6 credits outside the major. The remaining 10 credits may be taken in the major field or any supporting field. The Plan B also requires the completion of 1-3 papers written in connection with three courses taken in the program. Completion of the degree normally takes two years.
Twin Cities Campus

Astrophysics Minor

Astrophysics, Minnesota Institute for

College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:

Minnesota Institute for Astrophysics, 116 Church Street S.E., Minneapolis, MN 55455

Main Office: 356 Physics (612-624-4811; fax: 612-626-2029)

Email: grad-reg@astro.umn.edu

Website: http://www.astro.umn.edu

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 8
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Astrophysics is the study of the universe and its constituent parts. The department conducts research in observational, theoretical, and computational astrophysics, as well as instrument development. The main research areas include minor planetary bodies, solar system properties, dynamics of normal and active galaxies, stellar evolution, interaction of stars with their environments, the interstellar medium, astrophysical magnetohydrodynamics, and galactic and cosmological structure. Observational research includes activities that cover X-ray, ultraviolet, optical, infrared, and radio wavelengths. Extensive research programs in space physics, nucleosynthesis, and the elementary particle-cosmology interface are also carried out in interdisciplinary connections with the graduate program in physics.

Program Delivery

This program is available:

- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission

For an online application or for more information about graduate education admissions, see the [General Information](#) section of the catalog website.

Program Requirements

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.
Twin Cities Campus
Astrophysics Ph.D.
Astrophysics, Minnesota Institute for
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Minnesota Institute for Astrophysics, 356 Physics, 116 Church Street S.E., Minneapolis, MN 55455 (612-624-4811; fax: 612-626-2029)
Email: grad-reg@astro.umn.edu
Website: http://www.astro.umn.edu

● Program Type: Doctorate
● Requirements for this program are current for Fall 2014
● Length of program in credits: 64
● This program does not require summer semesters for timely completion.
● Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Astrophysics is the study of the universe and its constituent parts. The department conducts research in observational, theoretical, and computational astrophysics, as well as instrument development. The main research areas include minor planetary bodies, solar system properties, dynamics of normal and active galaxies, stellar evolution, interaction of stars with their environments, the interstellar medium, astrophysical magnetohydrodynamics, and galactic and cosmological structure. Observational research includes activities that cover X-ray, ultraviolet, optical, infrared, and radio wavelengths. Extensive research programs in space physics, nucleosynthesis, and the elementary particle-cosmology interface are also carried out in interdisciplinary connections with the graduate program in physics.

Program Delivery
This program is available:
● via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
For major work, an undergraduate degree in astronomy or physics or the equivalent is required. Contact the Graduate Studies Committee for exceptions.

Other requirements to be completed before admission:
A statement of career goals, scores from the GRE General (Aptitude) Test and Subject (Advanced) Test in physics, and three letters of recommendation are required. Applications for financial aid are due January 10. Students are admitted fall semester only.

Applicants must submit their test score(s) from the following:
● GRE

International applicants must submit score(s) from one of the following tests:
● TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
● IELTS
 - Total Score: 6.5
● MELAB
 - Final score: 80

The preferred English language test is Test of English as Foreign Language

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements

28 credits are required in the major.
12 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.0 is required for students to remain in good standing.

The Ph.D. degree requires a minimum of 40 course credits, including a year of classical physics (PHYS 5011-5012) and 12 credits in a minor or supporting program; 24 thesis credits are also required. The graduate written examination, held during spring term, must be passed on the second "real" attempt (first-year students are given a free trial). A second-year project must be defended by the end of the fall semester of the third year. The preliminary oral exam must be passed by the end of the third year. Ordinarily these two oral exams are combined.
Twin Cities Campus
Biomedical Engineering M.S.
Department of Biomedical Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Biomedical Engineering Graduate Program, 7-105 Nils Hasselmo Hall, 312 Church Street S.E., Minneapolis, MN 55455 (612-624-8396; fax 612-626-6583)
Email: bmengp@umn.edu
Website: http://bme.umn.edu/grad

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30 to 31
- This program does not require summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Biomedical engineering is the application of engineering principles and methods to problems in biology and medicine. The discipline includes the study of fundamental processes in biology and physiology, the study of the diagnosis and treatment of disease and injury, and the design and development of medical devices and techniques. Students take courses in mathematics, biology, biomedical engineering, and areas of science and engineering that are relevant for the degree objectives.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)
- partially online (between 50% to 80% of instruction is online)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.20.

Other requirements to be completed before admission:
A baccalaureate degree in engineering or in a physical or biological science is required. Successful applicants without an engineering degree are required to complete appropriate coursework (including linear algebra and differential equations) before being admitted as a candidate for the degree. In most cases, this coursework is not considered part of the degree program.

All application materials must be submitted online through the ApplyYourself application system. See http://bme.umn.edu/grad/appinfo.html for detailed instructions.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 100
 - Internet Based - Speaking Score: 23
 - Paper Based - Total Score: 600
- IELTS
 - Total Score: 7
- MELAB
 - Final score: 84

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements

Plan A: Plan A requires 8 to 20 major credits, 0 to 12 credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 10 to 31 major credits and 0 to 21 credits outside the major. The final exam is oral. A capstone project is required.

Capstone Project: The Plan B Project (BMEn 8820, minimum of 2 credits) should entail approximately 50-75 hours of work per credit, performed in collaboration with a faculty adviser. Students must submit a written report of approximately 10 double-spaced pages per credit to the adviser, who will assign a letter grade for BMEn 8820 based on the report. The report must then be defended before the student's committee.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 2.80 is required for students to remain in good standing.

At least 1 semester must be completed before filing a Degree Program Form.

The M.S. program requires courses in mathematics, biology, biomedical engineering, and relevant areas of science and engineering.

Plan A (with thesis) requires a minimum of 8 credits of BME courses, including 6 in BME core courses and 2 seminar credits, plus 10 thesis credits. The remaining 12 credits are taken from the list of approved electives, either in the major field or any supporting field.

The Plan B (with project) requires a minimum of 10 credits of BME courses, including 6 in BME core courses, 2 seminar credits, and at least 2 Plan B project credits. The remaining 21 credits are taken from the list of approved electives, either in the major field or any supporting field.

BMEn Core
Take at least 6 credits of BMEn Core courses at the 5xxx-level (http://bme.umn.edu/grad/courses/core-5000.html) and/or 8xxx-level (http://bme.umn.edu/grad/courses/core-8000.html). BMEn courses not listed on those pages do NOT satisfy the Core requirement.

BME Seminar
Take at least 2 credits of the BME Graduate Seminar. Other department/program seminars CANNOT be substituted for this requirement.

Take 2 or more credit(s) from the following:
- BMEN 8601 - Biomedical Engineering Seminar (1.0 cr)
- BMEN 8602 - Biomedical Engineering Seminar (1.0 cr)

Biology Electives
Take at least 6 credits of Biology Electives. Approved courses for this requirement are listed at http://bme.umn.edu/grad/courses/bio.html. Additional courses may be approved by the Director of Graduate Studies.

Technical Electives
Plan A students must take at least 6 credits of Technical Electives, including at least 3 credits that are Math- or Statistics-Intensive. Plan B students must take at least 9 credits of Technical Electives, including at least 3 credits that are Math- or Statistics-Intensive. Approved courses for these requirements are listed at http://bme.umn.edu/grad/courses/tech.html and http://bme.umn.edu/grad/courses/math.html. Additional courses may be approved by the Director of Graduate Studies.

Free Electives (Plan B only)
Plan B students must take at least 6 credits. Free Electives are graduate-level courses in a field of science or engineering. See http://bme.umn.edu/grad/courses/free.html. Plan A students are not required to take any Free Elective credits.
Twin Cities Campus

Biomedical Engineering Minor

Department of Biomedical Engineering

College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:

Biomedical Engineering Graduate Program, 7-105 Nils Hasselmo Hall, 312 Church Street S.E., Minneapolis, MN 55455 (612-624-8396; fax: 612-626-6583)

Email: bmengp@umn.edu

Website: http://bme.umn.edu/grad

- **Program Type:** Graduate minor related to major
- **Requirements for this program are current for Fall 2014**
- **Length of program in credits (Masters):** 6
- **Length of program in credits (Doctorate):** 12
- **This program does not require summer semesters for timely completion.**

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Biomedical engineering is the application of engineering principles and methods to problems in biology and medicine. The discipline includes the study of fundamental processes in biology and physiology, the study of the diagnosis and treatment of disease and injury, and the design and development of medical devices and techniques. Students take courses in mathematics, biology, biomedical engineering, and areas of science and engineering that are relevant for the degree objectives.

Program Delivery

This program is available:

- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Use of 4xxx courses towards program requirements is not permitted.

The master's minor requires at least 6 course credits, including one BME core course and one additional BME course.

The doctoral minor requires at least 12 credits, including two BME core courses, one course with a biological sciences emphasis, and one course with an engineering emphasis.

All courses for the graduate minor must be at 5xxx level or higher.

A list of core courses and approved electives is available at http://bme.umn.edu/grad/courses/index.html
Twin Cities Campus
Biomedical Engineering Ph.D.
Department of Biomedical Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Biomedical Engineering Graduate Program, 7-105 Nils Hasselmo Hall, 312 Church Street S.E., Minneapolis, MN 55455 (612-624-8396; fax: 612-626-6583)
Email: bmengp@umn.edu
Website: http://bme.umn.edu/grad

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 54
- This program requires summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the [General Information](#) section of the catalog website for requirements that apply to all major fields.

Biomedical engineering is the application of engineering principles and methods to problems in biology and medicine. The discipline includes the study of fundamental processes in biology and physiology, the study of the diagnosis and treatment of disease and injury, and the design and development of medical devices and techniques. Students take courses in mathematics, biology, biomedical engineering, and areas of science and engineering that are relevant for the degree objectives.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.50.

Other requirements to be completed before admission:
A baccalaureate degree in engineering or in a physical or biological science is required. Successful applicants without an engineering degree are required to complete appropriate coursework (including linear algebra and differential equations) before being admitted as a candidate for the degree. In most cases, this coursework is not considered part of the degree program.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 100
 - Internet Based - Speaking Score: 23
 - Paper Based - Total Score: 600
- IELTS
 - Total Score: 7
- MELAB
 - Final score: 84

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the [General Information](#) section of the catalog website.

Program Requirements
9 to 30 credits are required in the major.
0 to 21 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

The Ph.D. program requires coursework in mathematics, biology, biomedical engineering, and relevant areas of science and engineering, a written preliminary exam, an oral preliminary exam, a dissertation, and a final oral exam.

A minimum of 9 credits of BME courses are required, including 6 in BME core courses and 3 seminar credits. The remaining 21 credits are taken from the list of approved electives, either in the major or in any supporting field.

BMEn 8xxx Core
Take at least 6 credits of BMEn Core courses at the 8xxx-level (http://bme.umn.edu/grad/courses/core-8000.html). BMEn courses not listed on that page do NOT satisfy the 8xxx Core requirement.

BME Seminar
Take at least 3 credits of the BME Graduate Seminar. Another department/program graduate seminar may be substituted for 1 credit of this requirement, with prior approval from the Director of Graduate Studies.
Take 3 or more credit(s) from the following:
• **BMEN 8601** - Biomedical Engineering Seminar (1.0 cr)
• **BMEN 8602** - Biomedical Engineering Seminar (1.0 cr)

Biology Electives
Take at least 6 credits of Biology Electives. Approved courses for this requirement are listed at http://bme.umn.edu/grad/courses/bio.html. Additional courses may be approved by the Director of Graduate Studies.

Technical Electives
Take at least 9 credits of Technical Electives, including at least 6 credits that are Math- or Statistics-Intensive. Approved courses for these requirements are listed at http://bme.umn.edu/grad/courses/tech.html and http://bme.umn.edu/grad/courses/math.html. Additional courses may be approved by the Director of Graduate Studies.

Free Electives
Take at least 6 credits of Free Electives. Free Electives are graduate-level courses in a field of science or engineering. See http://bme.umn.edu/grad/courses/free.html. Up to three credits of coursework relevant to science and technology (e.g., public policy, ethical/historical aspects, etc.) may be counted toward this requirement with prior approval from the Director of Graduate Studies.
Twin Cities Campus
Chemical Engineering M.Ch.E.
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN 55455 (612-625-0382; fax 612-626-7246)
Email: cemsgrad@umn.edu
Website: http://www.cems.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Chemical Engineering

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Research activities in the Chemical Engineering and Materials Science (CEMS) Department focus on the development of renewable energy technologies, the solution of important medical and biological engineering challenges, the development of advanced materials, and the application of sophisticated mathematical and theoretical models.

Graduate courses offered cover core areas of chemical engineering (fluid mechanics, applied mathematics: linear and nonlinear analysis, transport, chemical thermodynamics, statistical thermodynamics and kinetics, and analysis of chemical reactors) and core areas of materials science (structure and symmetry of materials, thermodynamics and kinetics, electronic properties of materials, and mechanical properties of materials). In addition, several specialized topics are offered, including biochemical engineering, biological transport processes, food processing technology, colloids, principles of mass transfer in engineering and biological engineering, rheology, coating process fundamentals, process control, finite elements methods of computer-aided analysis, ceramics, polymers, materials design and performance, materials processing, corrosion, introduction to polymer chemistry, polymer laboratory, contact and fracture properties of materials, electron microscopy, thin films and interfaces, composites, electrochemical engineering, physical chemistry of polymers, solid state reaction kinetics, electronic structure of materials, electronic properties and applications of organic materials, electronic ceramics, dislocations and interfaces, epitaxial thin film growth, and science of porous media.

The master of chemical engineering (M.Ch.E.), also known as the professional master's, is designed for working professionals who are interested in obtaining a master's degree part time. This degree requires a design project. Part-time students may also choose the M.S.Ch.E. Plan C, which is coursework only.

The CEMS department focuses on the Ph.D. and does not generally admit students directly to the M.S.Ch.E. Plan A degree, which is a thesis based master's and is intended for current graduate students who choose not to seek a Ph.D.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A bachelor's degree in chemical engineering or other related field.

Other requirements to be completed before admission:
This professional master of engineering degree (M.Ch.E.) is designed for employees of local industries who wish to pursue their studies part time. No financial support is available. Applicants should contact the program before applying for admission.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 560
IELTS
- Total Score: 6.5

MELAB
- Final score: 80

Key to test abbreviations (TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is oral.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 2.80 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

All master's students must complete at least four core courses chosen from CHEN 8101, 8201, 8301, 8401, 8402, and 8501. In addition, master's students must complete a total of 30 credits, including 14 from the major program (this includes the four required courses), 6 from the minor or related program, and 10 thesis credits (for the M.Ch.E., thesis credits are used for the design project). Precise coursework plans are approved by the director of graduate studies. The minimum required GPA for completion is 2.80.

In addition to the coursework, M.Ch.E. students are required to complete a design project. The work-related M.Ch.E design project consists of an in-depth study of an engineering design. It need not represent a publishable research project. While the amount of work should be the same as for a master's thesis, the project can contain elements that the thesis would not, such as economic considerations, design consultation, and social relevance. The written design report must be approved by a three-person faculty committee. The final exam consists of the written design report and an oral presentation to the faculty committee.
Twin Cities Campus
Chemical Engineering M.S.Ch.E.
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN 55455 (612-625-0382; fax: 612-626-7246)
Email: cemsgrad@umn.edu
Website: http://www.cems.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program requires summer semesters for timely completion.
- Degree: Master of Science in Chemical Engineering

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The CEMS Department offers two types of master's degrees: the M.S.Ch.E. (Plan A or C) and the M.Ch.E. degree, also known as the professional master's. The M.S.Ch.E. Plan A degree is a thesis-based master's and is generally reserved only for current graduate students who choose not to seek a Ph.D. Working professionals who are interested in obtaining a master's degree part time should follow the requirements for the M.Ch.E. degree, which requires a design project, or the M.S.Ch.E. Plan C, which is coursework only.

Research activities in CEMS focus on the development of renewable energy technologies, the solution of important medical and biological engineering challenges, the development of advanced materials, and the application of sophisticated mathematical and theoretical models.

Graduate courses offered cover core areas of chemical engineering (fluid mechanics, applied mathematics: linear and nonlinear analysis, transport, chemical thermodynamics, statistical thermodynamics and kinetics, and analysis of chemical reactors) and core areas of materials science (structure and symmetry of materials, thermodynamics and kinetics, electronic properties of materials, and mechanical properties of materials). In addition, several specialized topics are offered, including biochemical engineering, biological transport processes, food processing technology, colloids, principles of mass transfer in engineering and biological engineering, rheology, coating process fundamentals, process control, finite elements methods of computer-aided analysis, ceramics, polymers, materials design and performance, materials processing, corrosion, introduction to polymer chemistry, polymer laboratory, contact and fracture properties of materials, electron microscopy, thin films and interfaces, composites, electrochemical engineering, physical chemistry of polymers, solid state reaction kinetics, electronic structure of materials, electronic properties and applications of organic materials, electronic ceramics, dislocations and interfaces, epitaxial thin film growth, and science of porous media.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A bachelor's degree in chemical engineering or other related field.

Special Application Requirements:
Note: With the exception of the professional master's degree (the M.Ch.E.) and the M.S.Ch.E. Plan C, the CEMS Department focuses on the Ph.D. and does not generally admit students directly to the M.S.Ch.E. Plan A degree.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
Paper Based - Total Score: 560
 IELTS
 - Total Score: 6.5
 MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is written and oral.

Plan C: Plan C requires 18 major credits and 12 credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 2.80 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

The M.S.Ch.E. is offered under Plan A (with thesis) or Plan C (coursework only); both require 30 credits.

All master's students must complete four core courses, chosen from CHEN 8101, 8201, 8301, 8401, 8402, and 8501. Plan A master's students complete 14 credits from the major program (this includes the 4 required courses), 6 from the minor or related program and 10 thesis credits. Plan C master's students complete 18 credits from the major program (this includes the 4 required courses) and 12 credits in one or more related fields.

Precise coursework plans are approved by the director of graduate studies. The minimum required GPA for completion is 2.80.
Twin Cities Campus
Chemical Engineering Minor
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN 55455 (612-625-0382; fax: 612-626-7246)
Email: cemsgrad@umn.edu
Website: http://www.cems.umn.edu

• Program Type: Graduate minor related to major
• Requirements for this program are current for Fall 2014
• Length of program in credits (Masters): 6
• Length of program in credits (Doctorate): 12
• This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Research activities in the Chemical Engineering and Materials Science (CEMS) Department focus on the development of renewable energy technologies, the solution of important medical and biological engineering challenges, the development of advanced materials, and the application of sophisticated mathematical and theoretical models.

Graduate courses offered cover core areas of chemical engineering (fluid mechanics, applied mathematics: linear and nonlinear analysis, transport, chemical thermodynamics, statistical thermodynamics and kinetics, and analysis of chemical reactors). In addition, several specialized topics are offered, including biochemical engineering, biological transport processes, food processing technology, colloids, principles of mass transfer in engineering and biological engineering, rheology, coating process fundamentals, contact and fracture properties of materials, electron microscopy, thin films and interfaces, composites, electrochemical engineering, physical chemistry of polymers, solid state reaction kinetics, electronic structure of materials, electronic properties and applications of organic materials, electronic ceramics, dislocations and interfaces, epitaxial thin film growth, and science of porous media.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

For a minor in chemical engineering, students must successfully complete at least two (for a master’s) or four (for a Ph.D.) of the core graduate courses in the minor program and obtain approval by the director of graduate studies. Core courses in chemical engineering are: CHEN 8101, 8201, 8301, 8401, 8402, and 8501.
Twin Cities Campus
Chemical Engineering Ph.D.
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Chemical Engineering and Materials Science and Engineering, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN 55455 (612-625-0382; fax: 612-626-7246)
Email: cemsgrad@umn.edu
Website: http://www.cems.umn.edu

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 57
- This program requires summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Research activities in the Chemical Engineering and Materials Science (CEMS) Department focus on the development of renewable energy technologies, the solution of important medical and biological engineering challenges, the development of advanced materials, and the application of sophisticated mathematical and theoretical models.

Graduate courses offered cover core areas of chemical engineering (fluid mechanics, applied mathematics: linear and nonlinear analysis, transport, chemical thermodynamics, statistical thermodynamics and kinetics, and analysis of chemical reactors) and core areas of materials science (structure and symmetry of materials, thermodynamics and kinetics, electronic properties of materials, and mechanical properties of materials). In addition, several specialized topics are offered, including biochemical engineering, biological transport processes, food processing technology, colloids, principles of mass transfer in engineering and biological engineering, rheology, coating process fundamentals, process control, finite elements methods of computer-aided analysis, ceramics, polymers, materials design and performance, materials processing, corrosion, introduction to polymer chemistry, polymer laboratory, contact and fracture properties of materials, electron microscopy, thin films and interfaces, composites, electrochemical engineering, physical chemistry of polymers, solid state reaction kinetics, electronic structure of materials, electronic properties and applications of organic materials, electronic ceramics, dislocations and interfaces, epitaxial thin film growth, and science of porous media.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A bachelor's degree in Chemical Engineering or related field.

Other requirements to be completed before admission:
Applicants must submit scores from the General Test of the GRE; three letters of recommendation from persons familiar with their scholarship and research potential; a complete set of official transcripts; and a clearly written statement of career interests, goals, and objectives. International students are required to provide TOEFL results. Submission of all application materials by January 1 is strongly encouraged to ensure priority consideration for fellowships and assistantships; late applications are considered if space is available.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 560
- IELTS
 - Total Score: 6.5
MELAB
- Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the
catalog website.

Program Requirements
21 credits are required in the major.
12 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

At least 3 semesters must be completed before filing a Degree Program Form.

All Ph.D. students must complete at least four core courses chosen from CHEN 8101, 8201, 8301, 8401, 8402, and 8501. In addition,
Ph.D. students must complete a total of 57 credits, including 21 from the major program (this includes the four required courses), 12
from the minor or related program, and 24 thesis credits. Precise coursework plans are approved by the director of graduate studies. The minimum required GPA for completion is 3.00.
Twin Cities Campus
Chemical Physics M.S.
Chemistry
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Chemical Physics Program, Department of Chemistry, University of Minnesota, 137 Smith Hall, 207 Pleasant Street S.E., Minneapolis, MN 55455 (612-626-7444; fax: 612-626-7541)
Email: chmapply@umn.edu
Website: http://www.chem.umn.edu/chemphys

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program requires summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Chemical physics focuses on areas where the techniques of chemistry and physics are brought together for the study of atoms and molecules; their interactions in gases, liquids, and solids; and the detailed structure and dynamics of material changes. Areas of research and specialization include spectroscopy, optical properties, laser applications, molecular collisions, chemical dynamics, quantum mechanics, computational chemistry, statistical mechanics, thermodynamics, low-temperature behavior, polymers and macromolecules, surface science, biochemistry, and biochemical and heterogeneous catalysis.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

An undergraduate degree in chemistry, physics or a related field is required for admission.

Other requirements to be completed before admission:
Prospective graduate students should have adequate undergraduate preparation in chemistry, physics, and mathematics.

All applicants must submit scores from the General GRE and Subject GRE (any science or engineering subject).

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
- Internet Based - Total Score: 100
- Internet Based - Writing Score: 21
- Internet Based - Reading Score: 20
- Internet Based - Speaking Score: 25
- Paper Based - Total Score: 550
- IELTS
- Total Score: 6.5
- MELAB
- Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements

Plan A: Plan A requires 20 major credits, up to null credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 30 major credits and up to null credits outside the major. The final exam is written.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 2.8 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

The M.S. degree offered under Plan A (with thesis) requires at least 20 course credits and 10 thesis credits. The M.S. Plan B degree requires 30 course credits, which would include 8 credits for the two Plan B project courses. The course credits must include at least 6 credits each in chemistry and physics or at least 3 credits each in quantum mechanics, thermodynamics, and statistical mechanics.
Twin Cities Campus
Chemical Physics Minor
Chemistry
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Chemical Physics Program, Department of Chemistry, University of Minnesota, 137 Smith Hall, 207 Pleasant Street S.E., Minneapolis, MN 55455 (612-626-7444; fax: 612-626-7541)
Email: chmapply@umn.edu
Website: http://www.chem.umn.edu/chemphys

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Chemical physics focuses on areas where the techniques of chemistry and physics are brought together for the study of atoms and molecules; their interactions in gases, liquids, and solids, and the detailed structure and dynamics of material changes. Areas of research and specialization include spectroscopy, optical properties, laser applications, molecular collisions, chemical dynamics, quantum mechanics, computational chemistry, statistical mechanics, thermodynamics, low-temperature behavior, polymers and macromolecules, surface science, biochemistry, and biochemical and heterogeneous catalysis.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
Other requirements to be completed before admission:
Good standing in related major graduate program and completion of at least 6 credits suitable for the minor.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

Minor Requirements for Students Majoring in Other Fields: Minor requirements are determined by the director of graduate studies, the student, and the adviser.
Twin Cities Campus

Chemical Physics Ph.D.

Chemistry

College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Chemical Physics Program, Department of Chemistry, University of Minnesota, 137 Smith Hall, 207 Pleasant Street S.E., Minneapolis, MN 55455 (612-626-7444; fax: 612-626-7541)
Email: chmapply@umn.edu
Website: http://www.chem.umn.edu/chemphys

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 48
- This program requires summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Chemical physics focuses on areas where the techniques of chemistry and physics are brought together for the study of atoms and molecules; their interactions in gases, liquids, and solids; and the detailed structure and dynamics of material changes. Areas of research and specialization include spectroscopy, optical properties, laser applications, molecular collisions, chemical dynamics, quantum mechanics, computational chemistry, statistical mechanics, thermodynamics, low-temperature behavior, polymers and macromolecules, surface science, biochemistry, and biochemical and heterogeneous catalysis.

Program Delivery

This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission

The preferred undergraduate GPA for admittance to the program is 3.00.

An undergraduate degree in chemistry, physics, or a related field is required for admission.

Other requirements to be completed before admission:
Prospective graduate students should have adequate undergraduate preparation in chemistry, physics and mathematics.

All applicants must submit scores from the General GRE and Subject GRE (any science or engineering subject).

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 100
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 20
 - Internet Based - Speaking Score: 25
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements
24 credits are required in the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

Each first-year chemical physics student will choose a program of study in consultation with his or her TMC (three-member committee). Ordinarily, course programs for Ph.D. students will include at least 24 graduate credits (5xxx or 8xxx), which must include either:
(a) at least 5 credits in chemistry (CHEM) and at least 5 credits in physics (PHYS), or
(b) at least 16 credits in chemistry and/or physics combined, including at least 5 credits of quantum mechanics and at least 5 credits chosen from among the areas of thermodynamics, statistical mechanics, statistical physics, and chemical dynamics.
Twin Cities Campus
Chemistry M.S.
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Assistant to the Director of Graduate Studies, Department of Chemistry, University of Minnesota, 137 Smith Hall, 207 Pleasant Street S.E., Minneapolis, MN 55455 (612-626-7444 or 1-800-777-2431; fax: 612-626-7541)
Email: chmapply@umn.edu
Website: http://www.chem.umn.edu

Program Type: Master's
Requirements for this program are current for Fall 2014
Length of program in credits: 30
This program does not require summer semesters for timely completion.
Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

While modern research in chemistry is very interdisciplinary, graduate work in the Department of Chemistry falls broadly into the focus areas of analytical chemistry, chemical biology, environmental chemistry, inorganic chemistry, materials chemistry, organic chemistry, polymer chemistry, experimental physical chemistry, and computational chemistry.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.20.

An undergraduate degree in chemistry or a related field is required for admission.

Other requirements to be completed before admission:
Applicants must offer the substantial equivalent of the courses in analytical, inorganic, organic, and physical chemistry that are required of undergraduate majors in the University of Minnesota chemistry curriculum. They must also have at least one year of college physics, plus college mathematics through calculus.

Three letters of recommendation are required for all applications. Scores from General (Aptitude) and Subject (Advanced) Tests of the GRE are required for all applicants. International applicants are expected to provide scores of at least 550 (paper), 213 (computer), or 85 (Internet) on the TOEFL, as well as GRE scores.

Applicants must submit their test score(s) from the following:
• GRE

International applicants must submit score(s) from one of the following tests:
• TOEFL
 - Internet Based - Total Score: 85
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Internet Based - Speaking Score: 23
 - Paper Based - Total Score: 550
• IELTS
 - Total Score: 6.5
• MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).
For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan A: Plan A requires 20 major credits, up to null credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 30 major credits and up to null credits outside the major. The final exam is written. A capstone project is required.

Capstone Project: Each Plan B project should involve a combined total of approximately 160 hours (the equivalent of four full-time weeks) of library research, reading, and/or writing resulting in the preparation of a significant written document. Students who plan to work on Plan B projects independent of the Preliminary Examination should present a plan, after consultation with the chosen instructor for the Plan B project, outlining the number and content of their projects to the DGS. Projects should be completed to the satisfaction of the instructor; the final grade is determined by the instructor.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 2.80 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

M.S. students are expected to pass a proficiency exam during their first academic year in residence. Plan A requires 20 course credits and 10 thesis credits; Plan B requires 30 course credits, which include 8 credits for the two Plan B project courses.
Twin Cities Campus
Chemistry Minor
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Assistant to the Director of Graduate Studies, Department of Chemistry, University of Minnesota, 137 Smith Hall, 207 Pleasant Street S.E., Minneapolis, MN 55455 (612-626-7444 or 1-800-777-2431; fax: 612-626-7541)
Email: chmapply@umn.edu
Website: http://www.chem.umn.edu

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

While modern research in chemistry is very interdisciplinary, graduate work in the Department of Chemistry falls broadly into the focus areas of analytical chemistry, chemical biology, environmental chemistry, inorganic chemistry, materials chemistry, organic chemistry, polymer chemistry, experimental physical chemistry, and computational chemistry.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

Six course credits from graduate-level chemistry courses are required for a master's minor. Twelve course credits from graduate-level chemistry courses are required for a Ph.D. minor.
Twin Cities Campus
Chemistry Ph.D.
Chemistry
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Assistant to the Director of Graduate Studies, Department of Chemistry, University of Minnesota, 137 Smith Hall, 207 Pleasant Street S.E., Minneapolis, MN 55455 (612-626-7444 or 1-800-777-2431; fax: 612-626-7541)
Email: chmapply@umn.edu
Website: http://www.chem.umn.edu

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 48
- This program does not require summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

While modern research in chemistry is very interdisciplinary, graduate work in the Department of Chemistry falls broadly into the focus areas of analytical chemistry, chemical biology, environmental chemistry, inorganic chemistry, materials chemistry, organic chemistry, polymer chemistry, experimental physical chemistry, and computational chemistry.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.20.

An undergraduate degree in chemistry or a related field is required for admission.

Other requirements to be completed before admission:
Applicants must offer the substantial equivalent of the courses in analytical, inorganic, organic, and physical chemistry that are required of undergraduate majors in the University of Minnesota chemistry curriculum. They must also have at least one year of college physics, plus college mathematics through calculus.

Special Application Requirements:
Three letters of recommendation are required for all applications. Scores from General (Aptitude) and Subject (Advanced) Tests of the GRE are required for all applicants. International applicants are expected to provide scores of at least 550 (paper), 213 (computer), or 85 (Internet) on the TOEFL, as well as GRE scores.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 85
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Internet Based - Speaking Score: 23
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80
Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

24 credits are required in the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

The Ph.D. program requires 24 course credits and 24 thesis credits. The course credits must include 1 credit of seminar (CHEM 8601) and 1 credit for the ethics course (CHEM 8066).

Students in the Ph.D. program are expected to pass four of five proficiency examinations during their first year in residence. The exams, which are at the level of an advanced undergraduate course, are in analytical chemistry, biochemistry, inorganic chemistry, organic chemistry, and physical chemistry. The exams are given during the chemistry first-year orientation program in August. In the event that a student does not pass the first exam, the exams are offered two more times during the academic year.

A minimum GPA of 3.00, 18 credits of coursework with a grade of B- or better, and passing grades on all four proficiency exams are required for students to remain in good standing.
Twin Cities Campus
Civil Engineering M.C.E.
CSENG Civil, Envrn & Geo-Eng (CEGE)
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 122 Civil Engineering Building, 500 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-625-5522; fax: 612-626-7750)
Email: civesgs@umn.edu
Website: http://www.ce.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Civil Engineering

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Civil engineering emphases are available in environmental engineering (e.g., pollutant fate and transport, process modeling, soil and groundwater remediation, water and wastewater treatment), geomechanics (e.g., fracture and localization, groundwater flow, stability and liquefaction, wave and shock propagation), structural engineering (e.g., computational and structural mechanics, earthquake engineering, infrastructure performance and durability, new systems and materials), transportation engineering (e.g., intelligent transportation systems, pavement design and materials, transportation economics, traffic safety), and water resources engineering (e.g., earthscape processes, environmental and biological systems, hydrologic and climate dynamics, hydrodynamics, and turbulence).

The master of civil engineering (M.C.E.) degree is designed for the practicing engineer who would like to obtain an advanced degree on a part-time or full-time basis. Students who intend to proceed to the Ph.D. program or who think they may later wish to be admitted to the Ph.D. program should apply for the master of science program. Students are expected to follow a coherent program of coursework in one of the following subareas of civil engineering: environmental, geomechanics, structural, transportation, or water resources engineering. The program is selected with the help of a faculty adviser and approved by the director of graduate studies. In addition to completing graduate-level courses, students must demonstrate professional competence either by carrying out and defending a design project or by taking a coursework-related final oral exam (without a project).

The degree typically takes 2-3 semesters (12-18 months) to complete on a full-time basis or 6-8 semesters on a part-time basis.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

An ABET-accredited, four-year bachelor's degree in engineering is required for admission.

Other requirements to be completed before admission:
Applicants are required to submit results of the GRE in support of their applications. The TOEFL is required of foreign applicants from non-English-speaking countries, with a score of at least 550 (paper), 213 (computer), or 79 (Internet). Admission requirements also include three letters of recommendation and a statement of purpose that outlines the prospective student's research interests, reasons for pursuing graduate studies, and career plans after graduation. Students are admitted each semester, but applicants are encouraged to begin fall semester and to submit their applications by December 3 before the year their studies are expected to begin.

Applicants must submit their test score(s) from the following:
- GRE
- TOEFL

International applicants must submit score(s) from one of the following tests:
- TOEFL
- Internet Based - Total Score: 79
- Internet Based - Writing Score: 21
- Internet Based - Reading Score: 19
- Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan A: Plan A requires 20 major credits, up to null credits outside the major, and 10 thesis credits. The final exam is oral.

Plan C: Plan C requires 30 major credits and up to null credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

The M.C.E. degree requires 30 credits and is offered under two plans. Plan A requires a minimum of 20 course credits and preparation of a thesis/design project (10 cr). The thesis/design project must be carried out by the student in consultation with a faculty adviser. Plan C is a coursework-only degree program and requires 30 course credits.
Twin Cities Campus
Civil Engineering M.S.
CSENG Civil, Envrn & Geo-Eng (CEGE)
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 122 Civil Engineering Building, 500 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-625-5522; fax: 612-626-7750)
Email: civesgs@umn.edu
Website: http://www.ce.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Civil engineering emphases are available in environmental engineering (e.g., pollutant fate and transport, process modeling, soil and groundwater remediation, water and wastewater treatment), geomechanics (e.g., fracture and localization, groundwater flow, stability and liquefaction, wave and shock propagation), structural engineering (e.g., computational and structural mechanics, earthquake engineering, infrastructure performance and durability, new systems and materials), transportation engineering (e.g., intelligent transportation systems, pavement design and materials, transportation economics, traffic safety), and water resources engineering (e.g., earthscape processes, environmental and biological systems, hydrologic and climate dynamics, hydrodynamics, and turbulence).

The master of science (M.S.) degree balances education in engineering fundamentals and design, and provides preparation for students wishing to pursue a career in industry, as well as those wanting to continue studies toward a Ph.D. degree. Programs range from the Plan C, which is a coursework-only program, to the Plan A, which balances coursework with research and development. The Plan C program is intended for practicing engineers who want to pursue a degree on a part-time basis, self-funded full-time students, as well as students who plan to continue on for a Ph.D. degree.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

A bachelor's degree in an engineering, basic science, or mathematics program is preferred.

Other requirements to be completed before admission:
Applicants are required to submit results of the GRE in support of their applications. A preferred TOEFL score of 550 (paper), 213 (computer), or 79 (Internet) is required of foreign applicants from non-English-speaking countries. Admission requirements also include three letters of recommendation and a statement of purpose that outlines the prospective student's research interests, reasons for pursuing graduate studies, and career plans after graduation. Students are admitted each semester, but applicants are strongly encouraged to submit their applications by December 3 in order to begin the following fall semester.

Special Application Requirements:
Admission depends primarily on the applicant's academic record and letters of recommendation. Applicants who lack civil engineering training are often required to complete one or more appropriate courses from the undergraduate civil engineering program. Graduate credit is not awarded for such preparatory work.

Applicants must submit their test score(s) from the following:
- GRE
- TOEFL

International applicants must submit score(s) from one of the following tests:
- TOEFL
Program Requirements

Plan A: Plan A requires 20 major credits, up to null credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 30 major credits and up to null credits outside the major. The final exam is oral.

Plan C: Plan C requires 30 major credits and up to null credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

The M.S. requires at least 30 credits and is offered under three plans. Plan A emphasizes research and preparation of a thesis; Plan B emphasizes coursework and a project; Plan C is coursework only. The thesis is written on a research project carried out in consultation with a faculty adviser. Under Plan B, students complete one to three Plan B papers as determined by the faculty adviser. Plan B papers can include computer programs, annotated bibliographies, field investigations, and analysis/design of special engineering problems.

Plan A requires at least 20 course credits and 10 thesis credits. Plan B requires a minimum of 30 credits, which includes at least 27 course credits, and may include a maximum of 3 credits of CE 8094 for the Plan B project. Plan C requires 30 course credits and must include at least 2 courses at the 8xxx-level. A program typically takes 18 to 24 months to complete.

Joint- or Dual-degree Coursework: Dual Master's Degree in Civil Engineering and Industrial and Systems Engineering (Transportation Engineering Focus): Student may take a total of 15 credits in common among the academic programs. Dual Master's Degree in Civil Engineering and Urban and Regional Planning (Transportation or Environmental Engineering Focus): Student may take a total of 18 credits in common among the academic programs.
Twin Cities Campus
Civil Engineering Minor
CSENG Civil, Envrn & Geo-Eng (CEGE)
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 122 Civil Engineering Building, 500 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-625-5522; fax: 612-626-7750)
Email: civesgs@umn.edu
Website: http://www.ce.umn.edu

• Program Type: Graduate minor related to major
• Requirements for this program are current for Fall 2014
• Length of program in credits (Masters): 6
• Length of program in credits (Doctorate): 12
• This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Civil engineering emphases are available in environmental engineering (e.g., pollutant fate and transport, process modeling, soil and groundwater remediation, water and wastewater treatment), geomechanics (e.g., fracture and localization, groundwater flow, stability and liquefaction, wave and shock propagation), structural engineering (e.g., computational and structural mechanics, earthquake engineering, infrastructure performance and durability, new systems and materials), transportation engineering (e.g., intelligent transportation systems, pavement design and materials, transportation economics, traffic safety), and water resources engineering (e.g., earthscape processes, environmental and biological systems, hydrologic and climate dynamics, hydrodynamics, and turbulence).

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

Minor Requirements for Students Majoring in Other Fields: For a master's minor, two or more 5xxx or 8xxx courses from the same subarea of civil engineering are required, for a total of 6 or more credits.

Minor Requirements for Students Majoring in Other Fields: For a Ph.D. minor, four or more 5xxx to 8xxx courses from one or two subareas of civil engineering are required for a total of 12 or more credits.
Twin Cities Campus
Civil Engineering Ph.D.
CSENG Civil, Envrn & Geo-Eng (CEGE)
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 122 Civil Engineering Building, 500 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-625-5522; fax: 612-626-7750)
Email: civesgs@umn.edu
Website: http://www.ce.umn.edu

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 60
- This program does not require summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Civil engineering emphases are available in environmental engineering (e.g., pollutant fate and transport, process modeling, soil and groundwater remediation, water and wastewater treatment), geomechanics (e.g., fracture and localization, groundwater flow, stability and liquefaction, wave and shock propagation), structural engineering (e.g., computational and structural mechanics, earthquake engineering, infrastructure performance and durability, new systems and materials), transportation engineering (e.g., intelligent transportation systems, pavement design and materials, transportation economics, traffic safety), and water resources engineering (e.g., earthscape processes, environmental and biological systems, hydrologic and climate dynamics, hydrodynamics, and turbulence).

The Ph.D. degree couples independent research with coursework in a comprehensive program for those wishing to attain mastery of their field. The Ph.D. degree demands the ability and desire to pursue independent and original studies and can be earned with emphasis in environmental, geomechanics, structural, transportation, or water resources engineering. Research performance, as judged by preparation of a dissertation on an independently pursued research topic, is the primary requirement for the Ph.D. degree.

Students enter the Ph.D. program two to four years following the bachelor's degree, normally after completing the M.S. degree. The Ph.D. program is typically completed in four to six years following the bachelor's degree. Each program of study is designed in consultation with a faculty adviser to meet the special needs of the student, although programs must be approved by the director of graduate studies.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

A bachelor's degree in an engineering, basic science, or mathematics program is preferred.

Other requirements to be completed before admission:
Applicants are required to submit results of the GRE in support of their applications. A preferred TOEFL score of 550 (paper), 213 (computer), or 79 (Internet) is required of foreign applicants from non-English-speaking countries. Admission requirements also include three letters of recommendation and a statement of purpose that outlines the prospective student's research interests, reasons for pursuing graduate studies, and career plans after graduation. Students are admitted each semester, but applicants are strongly encouraged to submit their applications by December 3 in order to begin the following fall semester.

Special Application Requirements:
Admission depends primarily on the applicant's academic record and letters of recommendation. Applicants who lack civil engineering training are often required to complete one or more appropriate courses from the undergraduate civil engineering program. Graduate credit is not awarded for such preparatory work.

Applicants must submit their test score(s) from the following:

© 2005 by the Regents of the University of Minnesota
The University of Minnesota is an equal opportunity educator and employer.
Information current as of January 21, 2015
GRE

International applicants must submit score(s) from one of the following tests:

- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550

- IELTS
 - Total Score: 6.5

- MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

36 credits are required in the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

A typical program consists of 36 credits of coursework beyond the bachelor's degree, plus 24 thesis credits. Credits earned in a M.S. program may be presented in partial fulfillment of the Ph.D. requirements. Rigid requirements for the number of 8xxx courses appropriate for Ph.D. programs have not been set; nonetheless, the Ph.D. represents the highest level of scholarly achievement and coursework should be selected accordingly.
Twin Cities Campus

Computer Science M.C.S.

Computer Science and Engineering

College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612-625-4002; fax: 612-625-0572)
Email: admissions@cs.umn.edu
Website: http://www.cs.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 31
- This program does not require summer semesters for timely completion.
- Degree: Master of Computer Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The graduate program in computer science offers coursework from across a broad spectrum of theoretical and applied computer science, combined with research opportunities in nearly all areas of the field. Faculty members advise students in such areas as algorithms and theoretical computer science; numerical, parallel, and high-performance computing; distributed computing and systems; artificial intelligence, robotics, and computer vision; databases and data mining; human-computer interaction and information systems; graphics and visualization; software engineering and programming languages; computer architecture and compilers; networking; bioinformatics and computational biology; and computer security. In addition, students may choose a course of study that integrates research in computer science with applications in other fields.

Computer science degrees include the M.C.S., a coursework-only degree that is intended to be a terminal degree.

The department also offers the M.S. (Plan A with thesis, Plan B with project, or coursework-only Plan C with coursework-based projects) and the Ph.D. In addition, the department supports a master of science in software engineering (M.S.S.E.) degree.

Faculty from the Department of Computer Science and Engineering also participate in a variety of other graduate programs, including Bioinformatics and Computational Biology, Health Informatics, Cognitive Science, Scientific Computation, and Human Factors and Ergonomics.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

Other requirements to be completed before admission:
The program requires all applicants to complete the department's online application as well as the University's online application. The names and email addresses of three recommenders are required; they will be asked to upload their letters of recommendation to the CS&E online application only. The department only accepts students for fall admission; the application deadline is April 1.

Special Application Requirements:
A degree in any major with a substantial background in computer science is required; a computer science major is preferred. Applicants with an inadequate background must resolve any deficiencies before applying to the program.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550

© 2005 by the Regents of the University of Minnesota
The University of Minnesota is an equal opportunity educator and employer.
Information current as of January 21, 2015
IELTS
- Total Score: 6.5
MELAB
- Final score: 80

Key to test abbreviations (TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan C: Plan C requires 31 major credits and 0 credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.

A minimum GPA of 3.00 is required for students to remain in good standing.

The M.C.S. is a coursework-only degree requiring 31 credits of graduate work. At least 16 credits must be in computer science courses, including one course from each of the 3 breadth areas: theory, systems, and applications; and 1 credit of colloquium (CSCI 8970). At least 6 credits must be in computer science 8xxx-level courses. The remaining 15 course credits may be taken in the major field or any supporting field. Students must maintain a GPA above 3.00 after completing 8 credits.

Program Sub-plans

A sub-plan is not required for this program.

Students may not complete the program with more than one sub-plan.

Rochester

University of Minnesota Rochester (UMR) offers the M.C.S. degree. Students may complete all degree requirements in Rochester by combining courses taught via streaming video using the UNITE (University-Industry Television for Education) instructional television system. Students are able to watch class live via the internet or pick up class on a special server at a later time.
Twin Cities Campus
Computer Science M.S.
Computer Science and Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612-625-4002; fax: 612-625-0572)
Email: admissions@cs.umn.edu
Website: http://www.cs.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 31
- This program does not require summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The graduate program in computer science offers coursework from across a broad spectrum of theoretical and applied computer science, combined with research opportunities in nearly all areas of the field. The graduate program's faculty members advise students in such areas as algorithms and theoretical computer science; numerical, parallel, and high-performance computing; distributed computing and systems; artificial intelligence, robotics, and computer vision; databases and data mining; human-computer interaction and information systems; graphics and visualization; software engineering and programming languages; computer architecture and compilers; networking; bio-informatics and computational biology; and computer security. In addition, students may choose a course of study that integrates research in computer science with applications in other fields.

Computer science degrees include the M.S. (offered Plan A with thesis, Plan B with project, or coursework-only Plan C with coursework-based projects), the M.C.S. (a terminal, coursework-only degree), and the Ph.D. The department also supports a master of science in software engineering (M.S.S.E.) degree.

Faculty from the Department of Computer Science and Engineering also participate in a variety of other graduate programs, including BioInformatics and Computational Biology, Health Informatics, Cognitive Science, Scientific Computation, and Human Factors and Ergonomics.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.25.

Other requirements to be completed before admission:
The program requires all applicants to complete the department's online application as well as the University's online application. The names and email addresses of three recommenders are required; they will be asked to upload their letters of recommendation to the CS&E online application only. Scores from the General (Aptitude) Test of the GRE are required for M.S. program applicants. Master's students are accepted for fall admission only. The application deadline is April 1. Students seeking financial aid must apply by December 5.

Special Application Requirements:
A degree in any major with a substantial background in computer science is required; a computer science major is preferred. Applicants with an inadequate background must resolve any deficiencies before applying to the program.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
TOEFL
- Internet Based - Total Score: 79
- Internet Based - Writing Score: 21
- Internet Based - Reading Score: 19
- Paper Based - Total Score: 550

IELTS
- Total Score: 6.5

MELAB
- Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan A: Plan A requires 21 major credits, 0 credits outside the major, and 10 thesis credits. The final exam is written and oral.

Plan B: Plan B requires 31 major credits and 0 credits outside the major. The final exam is oral.

Plan C: Plan C requires 31 major credits and 0 credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.

A minimum GPA of 3.25 is required for students to remain in good standing.

The M.S. requires a minimum of 31 credits and is offered under three plans. All plans require students to take one course from each of the 3 breadth areas in computer science: theory, systems, and applications; and 1 credit of colloquium (CSCI 8970). At least 3 credits must be in a computer science 8xxx-level course.

Plan A requires 13 credits in computer science coursework and 10 thesis credits. The remaining 8 credits may be taken in the major field or any supporting field.

Plan B and Plan C require 16 credits in computer science coursework. The remaining 15 credits may be taken in the major field or any supporting field.

Plan B requires 3 credits of the Plan B project course, CSCI 8760, which is in addition to the required 3 credit 8xxx-level CSCI course. The Plan B project is a significant project demonstrating the student's familiarity with the tools of research, the capability to work independently, and the ability to effectively relate their results to their committee.

Plan C is a coursework only degree. Students must take an additional 8xxx CSCI course and also complete a minimum of 100 hours of course-based project work, a written research report, and an oral presentation within CSCI courses taken for graduate credit.

Program Sub-plans

A sub-plan is not required for this program. Students may not complete the program with more than one sub-plan.

Rochester

University of Minnesota Rochester (UMR) offers the M.S. in computer science. Students may complete all degree requirements in Rochester via streaming video using the UNITE (University-Industry Television for Education) instructional television system. Students are able to watch class live via the internet or pick up class on a special server at a later time.
Twin Cities Campus
Computer Science Minor
Computer Science and Engineering
College of Science and Engineering

Link to a [list of faculty](#) for this program.

Contact Information:
Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612- 625-4002; fax: 612-625-0572)
Email: admissions@cs.umn.edu
Website: http://www.cs.umn.edu

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 9
- Length of program in credits (Doctorate): 13
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the [General Information](#) section of the catalog website for requirements that apply to all major fields.

The graduate program in computer science offers coursework from across a broad spectrum of theoretical and applied computer science, combined with research opportunities in nearly all areas of the field. Faculty members advise students in such areas as algorithms and theoretical computer science; numerical, parallel, and high-performance computing; distributed computing and systems; artificial intelligence, robotics, and computer vision; databases and data mining; human-computer interaction and information systems; graphics and visualization; software engineering and programming languages; computer architecture and compilers; networking; bioinformatics and computational biology; and computer security. In addition, students may choose a course of study that integrates research in computer science with applications in other fields.

Computer science degrees include the M.C.S., the M.S. (Plan A with thesis, Plan B with project, or coursework-only Plan C with coursework-based projects), and the Ph.D. The department also supports a master of science in software engineering (M.S.S.E.) degree.

Faculty from the Department of Computer Science and Engineering also participate in a variety of other graduate programs, including BioInformatics and Computational Biology, Health Informatics, Cognitive Science, Scientific Computation and Human Factors and Ergonomics.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

For an online application or for more information about graduate education admissions, see the [General Information](#) section of the catalog website.

Program Requirements
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minor in computer science for master's students majoring in other fields must include 9 credits of graduate courses in CSCI. The colloquium credit may not be included. There is a limit of one 4xxx course and a requirement of at least one 8xxx course or a 5xxx course that has a prerequisite of a 5xxx course. These courses must be taken on the A/F grading scale and a minimum GPA of 3.00 is expected.

A minor in computer science for Ph.D. students majoring in other fields must include 13 credits of graduate courses in CSCI, and should include the colloquium credit. There is a limit of one 4xxx course and a requirement of at least one 8xxx course or a 5xxx course that has a prerequisite of a 5xxx course. These courses must be taken on the A/F grading scale and a minimum GPA of 3.25 is expected.
Twin Cities Campus
Computer Science Ph.D.
Computer Science and Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612-625-4002; fax: 612-625-0572)
Email: admissions@cs.umn.edu
Website: http://www.cs.umn.edu

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 55
- This program does not require summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The graduate program in computer science offers coursework from across a broad spectrum of theoretical and applied computer science, combined with research opportunities in nearly all areas of the field. Faculty members advise students in such areas as algorithms and theoretical computer science; numerical, parallel, and high-performance computing; distributed computing and systems; artificial intelligence, robotics, and computer vision; databases and data mining; human-computer interaction and information systems; graphics and visualization; software engineering and programming languages; computer architecture and compilers; networking; bio-informatics and computational biology; and computer security. In addition, students may choose a course of study that integrates research in computer science with applications in other fields.

Computer science degrees include the Ph.D., as well as the M.C.S. (a terminal, coursework-only degree), and the M.S. (offered Plan A with thesis, Plan B with project, or coursework-only Plan C with coursework-based projects). The department also supports a master of science in software engineering (M.S.S.E.) degree.

Faculty from the Department of Computer Science and Engineering also participate in a variety of other graduate programs, including BioInformatics and Computational Biology, Health Informatics, Cognitive Science, Scientific Computation and Human Factors and Ergonomics.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.45.

A degree in any major with a substantial background in computer science is required; a computer science major is preferred.

Other requirements to be completed before admission:
The program requires all applicants to complete the department's online application, as well as the University's online application. The names and email addresses of three recommenders are required; they will be asked to upload their letters of recommendation to the CS&E online application only. Scores from the General (Aptitude) Test of the GRE are required for Ph.D. program applicants. Ph.D. students are accepted for fall admission only. The application deadline is April 1. Students seeking financial aid must apply by December 5.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21

© 2005 by the Regents of the University of Minnesota
The University of Minnesota is an equal opportunity educator and employer.
Information current as of January 21, 2015
- Internet Based - Reading Score: 19
- Paper Based - Total Score: 550
 - IELTS
 - Total Score: 6.5
 - MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

16 to 25 credits are required in the major.
6 to 15 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.

A minimum GPA of 3.45 is required for students to remain in good standing.

The Ph.D. requires a total of 55 credits consisting of 31 course credits and 24 thesis credits. Of the 31 course credits, 16 must be in computer science courses and at least 6 from outside the major. The 16 major credits must include five 3-credit courses that fulfill the breadth requirement in three different areas: theory, systems, and applications; plus 1 credit of colloquium (CSCI 8970). The remaining 9 credits may be taken as additional graduate-level courses, including as part of a designated minor.

Students are expected to complete all courses in their degree program with a GPA of at least 3.45.

All doctoral students must demonstrate background knowledge in computer science as explained in the program requirements at http://www.cs.umn.edu/academics/graduate/index.php
Twin Cities Campus
Data Science M.S.
Computer Science and Engineering
College of Science and Engineering

Link to a [list of faculty](#) for this program.

Contact Information:
Data Science Graduate Program, Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612-625-4002; fax: 612-625-0572).
Email: TBD
Website: http://TBD

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 31
- This program does not require summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the [General Information](#) section of the catalog website for requirements that apply to all major fields.

The M.S. in Data Science program provides a strong foundation in the science of Big Data and its analysis by gathering in a single program the knowledge, expertise, and educational assets in data collection and management, data analytics, scalable data-driven pattern discovery, and the fundamental concepts behind these methods.

Students who graduate from this regular 2 year master's program will learn the state-of-the-art methods for treating Big Data, be exposed to the cutting edge methods and theory forming the basis for the next generation of Big Data technology, and will complete a project demonstrating that they can use the fundamental concepts to design innovative methods for new application areas arising from business, government, security, medicine, biology, physical sciences, and the environment.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A bachelor's degree from an accredited college or university in computer science, math, statistics, engineering, natural sciences, or a related field.

Other requirements to be completed before admission:
The undergraduate degree must include multivariable calculus, linear algebra, and mathematical software environments such as Matlab or R or the equivalent. Also required is programming experience including basic algorithms and data structures normally taught in beginning computer science courses either as part of the undergraduate degree or subsequent work experience.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Part 1 (Composition) score: 80

Key to [test abbreviations](#)(GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the [General Information](#) section of the catalog website.
Program Requirements

Plan B: Plan B requires 31 major credits and up to null credits outside the major. The final exam is oral. A capstone project is required.

Capstone Project: Students must complete a capstone project supervised by a faculty member.

This program may be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.

The program requires a total of 31 credits consisting of 6 credits each from the three emphasis areas: statistics, algorithms, and infrastructure and large scale computing; 6 credits in approved electives; 1 credit of research colloquium; and 6 credits for the capstone project.
Twin Cities Campus
Earth Sciences M.S.
Department of Earth Sciences
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Earth Sciences, University of Minnesota, 310 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-624-1333; fax: 612-625-3819)
Email: esci@umn.edu
Website: http://www.esci.umn.edu/programs/graduate

Program Type: Master's
Requirements for this program are current for Fall 2014
Length of program in credits: 30
This program does not require summer semesters for timely completion.
Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The modern earth sciences are a remarkable synthesis of the physical and biological sciences. They are at the forefront of inquiry into and solutions of most of the major issues involving the global environment: climate, oceans, freshwater in all its forms, natural resources, and natural disasters. Like no other field, they integrate all the systems, from surface to great depth, from physics to chemistry to biology, and over all of geologic time and all geographic scales. The program includes the fields of structural geology, tectonics, petrology, hydrogeology, geomorphology, sedimentology, surface processes, geochemistry, biogeochemistry, biogeology, chemical oceanography, mineralogy, mineral and rock magnetism, rock and mineral physics, geodynamics, seismology, geostatistics, planetary geology, and geophysics and applied geophysics.

Students may accommodate other areas of interest such as engineering geology, environmental geology, materials science, soil science, and paleoecology by choosing a minor or supporting field from outside the program.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
Other requirements to be completed before admission:
Materials required for a complete application file include the student's statement of purpose, three letters of recommendation, transcripts, official GRE scores, and the Application for Admission. Applications are considered at any time; however, to be considered for financial aid, all materials must be submitted by January 8. Studies may begin in any semester or summer session, although fall semester is preferable. IMPORTANT: Refer to the Graduate Programs section of the department website (http://www.esci.umn.edu/programs/gradprospective) for a listing of all required application materials and preferred method of submission.

Special Application Requirements:
Most candidates for advanced degrees have completed a bachelor's degree in geology, geophysics, or the broad field of earth and material sciences. However, the department encourages applications from students in fields such as chemistry, physics, or biology.

At least one year each of study in calculus, chemistry, and physics is required. In general, an outstanding academic record is expected.

Applicants must submit their test score(s) from the following:
• GRE

International applicants must submit score(s) from one of the following tests:
• TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21

© 2005 by the Regents of the University of Minnesota
The University of Minnesota is an equal opportunity educator and employer.
Information current as of January 21, 2015
Program Requirements

Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 14 to 22 major credits and 8 to 16 credits outside the major. The final exam is written and oral. A capstone project is required.

Capstone Project: Students must demonstrate familiarity with the tools of research or scholarship in their track, the ability to work independently, and the ability to present the results of their investigation effectively, by completing one or more projects, which may take the form of a research paper, presentation of research results, or completion of a faculty-supervised research experience. The Plan B project(s) should involve a minimum combined total of approximately 120 hours (the equivalent of three full-time weeks) of work.

Plan C: Plan C requires 14 to 21 major credits and 9 to 16 credits outside the major. The is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 2.80 is required for students to remain in good standing.

At least 1 semesters must be completed before filing a Degree Program Form.

At the onset of studies, a coursework "compact" will be developed with the student, his/her adviser, and the graduate studies committee. The compact will be reviewed annually to assure timely progress and revise as needed.

For Plan A and Plan B, students must choose one of five tracks in the Earth Sciences program (Geology, Geophysics, Biogeology, Hydrogeology, or Earth Sciences). Tracks carry coursework requirements that are part of the student's course compact.

Plan A (thesis) requires 14 credits in the major, 6 outside the major, and 10 thesis credits. Plan B (project) requires a minimum of 14 credits in the major and a minimum of 8 credits outside the major. The remaining 8 credits can be taken in the major or in any supporting field.

Plan C is a coursework only option with an emphasis in hydrogeology and environmental science. A minimum of 14 credits are required in the major and a minimum of 9 credits outside the major. The remaining 7 credits can be taken in the major or in any supporting field.

All students must complete ESCI 8001 (Introductory Graduate Seminar), preferably in the first year.

With approval of the DGS, credits for ESCI 5093 (Directed Studies in Earth Sciences) may be applied to track requirements.

Program Sub-plans

Students are required to complete one of the following sub-plans.

Students may not complete the program with more than one sub-plan.

Biogeology

Biogeology represents a rapidly growing area at the intersection between Earth and the life sciences. It includes research in microbial evolution and biochemistry, microbe/mineral chemical interactions, the role of organisms in basic geological processes, the principles through which organisms or organic compounds can be used to reconstruct surface conditions, biogeochemical cycling, pollution control and remediation, the origin of life on Earth, and astrobiology. This is a broad field that is moving in new and exciting directions, and witnessing explosive growth in understanding the variety of ways biology mediates geology and vice versa. Many of the most basic earth surface processes are now seen as intimately biological with rates and pathways dictated by organic processes.
the importance of these processes, quantifying them through time and place, and learning to utilize and/or control them will be major components of earth Sciences research in the 21st century.

[ESCI 8402 - Biogeochemical Cycles in the Ocean (3 cr); ESCI 4801 - Geomicrobiology (3 cr)]

Earth Sciences

This generalist track exists for students whose curriculum and/or thesis (paper or project for M.S. Plan B) do not fit any of the other four tracks. Because it is not specific to a discipline, there are no mandatory courses in the major apart from the introductory graduate seminar, a minimum of 6 additional graduate-level credits in the major program, 12 supporting program credits or completion of all requirements for a minor, and thesis credits. A curriculum specific to the student will be set through the compact process.

6-credit minimum; courses determined on an individual basis.

Geology

Geology uses field observation, laboratory work, analog and computer modeling, chemical and biological probes and assays to understand Earth's coupled rock, water and biological systems, the underlying processes, and their history of interaction as evidenced in the rock record.

6-credit minimum from any two of the following courses: ESCI 5302 - Isotope Geology; ESCI 5351 - Geochemical Modeling of Aqueous Systems; ESCI 5353 - Electron Microprobe Theory and Practice; ESCI 5502 - Advanced Structural Geology; ESCI 5503 - Advanced Petrology; ESCI 5601 - Advanced Sedimentology; ESCI 5602 - Depositional Mechanics; ESCI 5705 - Limnogeology and Paleoenvironment.

Geophysics

Geophysics uses remote sensing probes (seismic waves, potential fields, etc.), laboratory simulation of deep earth conditions and computer modeling of fluid and continuum mechanical dynamics to investigate the structure, composition, history and dynamics of solid Earth and other planets.

6-credit minimum including ESCI 4211 - Solid Earth Geophysics I; plus at least one of the following courses: ESCI 4203 - Principles of Geophysical Exploration; ESCI 8243 - Geomagnetism and Paleomagnetism; ESCI 4212 - Solid Earth Geophysics II; ESCI 5201 - Time-Series Analysis of Geological Phenomena; ESCI 5203 - Rock and Mineral Physics; ESCI 5204 - Geostatistics and Inverse Theory.

Hydrogeology

Hydrogeology uses direct observation and remote sensing, computer modeling and laboratory simulation to constrain the interaction of water and rock in Earth's shallow subsurface. Freshwater is Earth's most precious and increasingly overexploited resource. Hydrogeology is a key discipline in the effective shepherding of this important reserve. This track establishes a baseline curriculum for hydrogeology at the graduate level. The compact process will identify additional coursework appropriate to the student's prior training and research directions.

6-credit minimum including ESCI 4702 - General Hydrogeology; plus at least one of the following courses: ESCI 5108 - Principles of Environmental Geology; ESCI 5205 - Fluid Mechanics in Earth and Environmental Sciences; ESCI 5713 - Tracers and Karst Hydrogeology; ESCI 5971 - Field Hydrogeology; ESCI 8712 - Transport Phenomena and Analytical Geohydrology; ESCI 8718 - Numerical Methods in Hydrogeology.
Twin Cities Campus
Earth Sciences Minor
Department of Earth Sciences
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Graduate Program, Department of Earth Sciences, University of Minnesota, 310 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-624-1333; fax: 612-625-3819)
Email: esci@umn.edu
Website: http://www.esci.umn.edu/programs/graduate

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The modern earth sciences are a remarkable synthesis of the physical and biological sciences. They are at the forefront of inquiry into and solutions of most of the major issues involving the global environment: climate, oceans, freshwater in all its forms, natural resources, and natural disasters. Like no other field, they integrate all the systems, from surface to great depth, from physics to chemistry to biology, and over all of geologic time and all geographic scales. The program includes the fields of structural geology, tectonics, petrology, hydrogeology, geomorphology, sedimentology, surface processes, geochemistry, biogeochemistry, biogeology, chemical oceanography, mineralogy, mineral and rock magnetism, rock and mineral physics, geodynamics, seismology, geostatistics, planetary geology, and geophysics and applied geophysics.

Students may accommodate other areas of interest such as engineering geology, environmental geology, materials science, soil science, and paleoecology by choosing a minor or supporting field from outside the program.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

The minor is established individually with approval by the graduate studies committee. Typically, no more than 50 percent of the total course credits are 4xxx.
Twin Cities Campus
Earth Sciences Ph.D.
Department of Earth Sciences
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Graduate Program, Department of Earth Sciences, University of Minnesota, 310 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-624-1333; fax: 612-625-3819)
Email: esci@umn.edu
Website: http://www.esci.umn.edu/programs/graduate

• Program Type: Doctorate
• Requirements for this program are current for Fall 2014
• Length of program in credits: 48
• This program does not require summer semesters for timely completion.
• Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The modern earth sciences are a remarkable synthesis of the physical and biological sciences. They are at the forefront of inquiry into and solutions of most of the major issues involving the global environment: climate, oceans, freshwater in all its forms, natural resources, and natural disasters. Like no other field, they integrate all the systems, from surface to great depth, from physics to chemistry to biology, and over all of geologic time and all geographic scales. The program includes the fields of structural geology, tectonics, petrology, hydrogeology, geomorphology, sedimentology, surface processes, geochemistry, biogeochemistry, biogeology, chemical oceanography, mineralogy, mineral and rock magnetism, rock and mineral physics, geodynamics, seismology, geostatistics, planetary geology, and geophysics and applied geophysics.

Students may accommodate other areas of interest such as engineering geology, environmental geology, materials science, soil science, and paleoecology by choosing a minor or supporting field from outside the program.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
Other requirements to be completed before admission:
Materials required for a complete application file include the student's statement of purpose, three letters of recommendation, transcripts, official GRE scores, and the Application for Admission. Applications are considered at any time; however, to be considered for financial aid, all materials must be submitted by January 8. Studies may begin in any semester or summer session, although fall semester is preferable. IMPORTANT: Refer to the Graduate Programs section of the department website (http://www.esci.umn.edu/programs/gradprospective) for a listing of all required application materials and preferred method of submission.

Special Application Requirements:
Most candidates for advanced degrees have completed a bachelor's degree in geology, geophysics, or the broad field of earth and material sciences. However, the department encourages applications from students in fields such as chemistry, physics, or biology.

At least one year of study each in calculus, chemistry, and physics is required. In general, an outstanding academic record is expected.

Applicants must submit their test score(s) from the following:
• GRE

International applicants must submit score(s) from one of the following tests:
• TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
Program Requirements

12 credits are required in the major.
12 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.0 is required for students to remain in good standing.

At the onset of studies, a coursework "compact" will be developed with the student, his/her adviser, and the graduate studies committee. The compact will be reviewed annually to assure timely progress and revise as needed.

Students must choose one of five tracks in the Earth Sciences program (Geology, Geophysics, Biogeology, Hydrogeology, or Earth Sciences). Tracks carry coursework requirements that are part of the student's course compact.

The Ph.D. requires a minimum 12 credits of coursework in Earth Sciences and a minimum of 12 credits in a minor or supporting field, plus 24 thesis credits. All students must complete 8001 (Introductory Graduate Seminar), preferably in the first year.

With approval of the DGS, ESCI 5093 (Directed Studies in Earth Sciences) may be applied to track requirements.

Program Sub-plans

Students are required to complete one of the following sub-plans.
Students may not complete the program with more than one sub-plan.

Biogeology

Biogeology represents a rapidly growing area at the intersection between Earth and the life sciences. It includes research in microbial evolution and biochemistry, microbe/mineral chemical interactions, the role of organisms in basic geological processes, the principles through which organisms or organic compounds can be used to reconstruct surface conditions, biogeochemical cycling, pollution control and remediation, the origin of life on Earth, and astrobiology. This is a broad field that is moving in new and exciting directions, and witnessing explosive growth in understanding the variety of ways biology mediates geology and vice versa. Many of the most basic earth surface processes are now seen as intimately biological with rates and pathways dictated by organic processes. Understanding the importance of these processes, quantifying them through time and place, and learning to utilize and/or control them will be major components of earth sciences research in the 21st century.

ESCI 8402 - Biogeochemical Cycles in the Ocean (3 cr); ESCI 4801 - Geomicrobiology (3 cr).

Earth Sciences

This generalist track exists for students whose curriculum and/or thesis (paper or project for M.S. Plan B) do not fit any of the other four tracks. Because it is not specific to a discipline, there are no mandatory courses in the major apart from the introductory graduate seminar, a minimum of 6 additional graduate-level credits in the major program, 12 supporting program credits or completion of all requirements for a minor, and thesis credits. A curriculum specific to the student will be set through the compact process.

6-credit minimum; courses determined on an individual basis.

Geology
Geology uses field observation, laboratory work, analog and computer modeling, chemical and biological probes and assays to understand Earth's coupled rock, water and biological systems, the underlying processes, and their history of interaction as evidenced in the rock record.

6-credit minimum from any two of the following courses: ESCI 5302 - Isotope Geology; ESCI 5351 - Geochemical Modeling of Aqueous Systems; ESCI 5353 - Electron Microprobe Theory and Practice; ESCI 5502 - Advanced Structural Geology; ESCI 5503 - Advanced Petrology; ESCI 5601 - Advanced Sedimentology; ESCI 5602 - Depositional Mechanics; ESCI 5705 - Limnogeology and Paleoenvironment.

Geophysics
Geophysics uses remote sensing probes (seismic waves, potential fields, etc.), laboratory simulation of deep Earth conditions and computer modeling of fluid and continuum mechanical dynamics to investigate the structure, composition, history and dynamics of solid Earth and other planets.

6-credit minimum including ESCI 4211 - Solid Earth Geophysics I; plus at least one of the following courses: ESCI 4203 - Principles of Geophysical Exploration; ESCI 8243 - Geomagnetism and Paleomagnetism; ESCI 4212 - Solid Earth Geophysics II; ESCI 5201 - Time-Series Analysis of Geological Phenomena; ESCI 5203 - Rock and Mineral Physics; ESCI 5204 - Geostatistics and Inverse Theory.

Hydrogeology
Hydrogeology uses direct observation and remote sensing, computer modeling and laboratory simulation to constrain the interaction of water and rock in Earth's shallow subsurface. Freshwater is Earth's most precious and increasingly overexploited resource. Hydrogeology is a key discipline in the effective shepherding of this important reserve. This track establishes a baseline curriculum for hydrogeology at the graduate level. The compact process will identify additional coursework appropriate to the student's prior training and research directions.

6-credit minimum including ESCI 4702 - General Hydrogeology; plus at least one of the following courses: ESCI 5108 - Principles of Environmental Geology; ESCI 5205 - Fluid Mechanics in Earth and Environmental Sciences; ESCI 5713 - Tracers and Karst Hydrogeology; ESCI 5971 - Field Hydrogeology; ESCI 8712 - Transport Phenomena and Analytical Geohydrology; 8718 - Numerical Methods in Hydrogeology.
Twin Cities Campus
Electrical Engineering M.S.E.E.
Electrical and Computer Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Director of Graduate Studies, Department of Electrical and Computer Engineering, University of Minnesota, 3-166 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612-625-3564; fax: 612-626-1136).
Email: jager001@umn.edu
Website: http://www.ece.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Science in Electrical Engineering

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The Department of Electrical and Computer Engineering offers diverse educational programs that encompass nearly all aspects of modern electrical and computer engineering, ranging from the very theoretical system and information theory to highly experimental work in novel device research and microelectronics. Emphases in the major are solid state and physical electronics, surface physics, thin films, sputtering, noise and fluctuation phenomena, quantum electronics, plasma physics, automation, power systems and power electronics theory, wave propagation, communication systems and theory, optics, lasers, fiber optics, magnetism, semiconductor properties and devices, VLSI and WSI engineering in theory and practice, network theory, signal and image processing, and computer and systems engineering. Interdisciplinary work is also available in bioelectrical sciences, control sciences, computer sciences, solar energy, applications of systems theory to urban transportation and economic planning, and biological modeling.

Students are considered for admission beginning fall semester only (except for part-time students living in Minnesota who work in industry and who may apply for other terms). The deadline for applying for fall semester is December 1.

Program Delivery
This program is available:
- partially classroom (the majority of instruction is face-to-face)
- partially online (between 50% to 80% of instruction is online)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.40.

Other requirements to be completed before admission:
All documents must be submitted electronically. No documents should be mailed to the department or the Graduate Admissions Office.

Every applicant must submit the University of Minnesota application for graduate admission and the Electrical Engineering Department Application (this is part of the application for graduate admission).

The department requires three letters of recommendation. Letters of recommendation must be written on university stationery and include the recommender's signature. Recommenders will be emailed a link where they can submit their letters of recommendation electronically.

Every applicant must upload a resume to the online department application.

Every applicant must submit the General Test of the GRE (except University of Minnesota Bachelor of Electrical Engineering graduates who have a GPA of 3.40 or better). The GRE Subject Test is not required for admission.

Special Application Requirements:
Consideration is given to students who have completed another curriculum in engineering, science, physics, or mathematics that includes sufficient preparation to pursue a graduate program in electrical engineering. In some instances, additional preparatory studies may be required after admission.
M.S. students who want to continue on to the Ph.D. must pass the Ph.D. Preliminary Written Examination by the end of their second year in residence. Students have two chances to pass the exam. The Ph.D. Preliminary Written Examination is typically held in November and in April.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is oral.

Plan C: Plan C requires 18 to 24 major credits and 6 to 12 credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

At least 1 semesters must be completed before filing a Degree Program Form.

The M.S. requires a minimum of 30 credits. Plan A requires 14 credits from EE courses 5xxx and above, 6 credits from related fields outside of the department but within CSE, and 10 thesis credits. Plan C requires 18 credits from EE courses 5xxx and above, 6 credits from related fields within CSE, and an additional 6 credits, which can be either major or related field credits.

Plan C students must satisfy a paper and a project requirement, which may be fulfilled either in approved EE coursework or by registering for the Plan C Project. Students choosing to pursue a minor must satisfy both EE and the outside minor department requirements. Courses that are cross-listed with EE must be counted for major field credit. Part-time students must choose Plan C; full-time students may choose either Plan A or Plan C. The student’s Graduate Degree Plan, listing all courses to be included toward the degree, should be submitted no later than the end of the first year of the program. The department limits project, seminar, special investigation, directed study credits, and GRAD 0999 registrations.

Use of 4xxx courses toward program requirements is permitted, limited to 9 credits. 4xxx courses may not be counted toward the major field requirement. Only 4xxx credits from the approved list may be counted toward degree requirements.

All coursework must be taken A-F, unless only offered S-N, to be counted toward degree requirements.

A 5-year combined bachelor's/master's degree is available for select U of M undergraduates.

Program Sub-plans
A sub-plan is not required for this program.

Students may not complete the program with more than one sub-plan.

Rochester
The University of Minnesota Rochester (UMR) offers the M.S. degree in electrical engineering. Students may complete all degree requirements in Rochester by combining courses taught by College of Science and Engineering faculty in person (face-to-face), or via
streaming video using the UNITE (University-Industry Television for Education) instructional television system. UNITE enables students to watch class live via the internet or pick up class on a special server at a later time.
Twin Cities Campus
Electrical Engineering Minor
Electrical and Computer Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Director of Graduate Studies, Department of Electrical and Computer Engineering, University of Minnesota, 3-166 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612-625-3564; fax: 612-626-1136)
Email: jager001@umn.edu
Website: http://www.ece.umn.edu

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The Department of Electrical and Computer Engineering offers diverse educational programs that encompass nearly all aspects of modern electrical and computer engineering, ranging from the very theoretical system and information theory to highly experimental work in novel device research and microelectronics. Emphases in the major are solid state and physical electronics, surface physics, thin films, sputtering, noise and fluctuation phenomena, quantum electronics, plasma physics, automation, power systems and power electronics theory, wave propagation, communication systems and theory, optics, lasers, fiber optics, magnetism, semiconductor properties and devices, VLSI and WSI engineering in theory and practice, network theory, signal and image processing, and computer and systems engineering. Interdisciplinary work is also available in bioelectrical sciences, control sciences, computer sciences, solar energy, applications of systems theory to urban transportation and economic planning, and biological modeling.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)
- partially online (between 50% to 80% of instruction is online)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.40.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

Minor coursework must be taken A-F.

Minor credits must be 5xxx or 8xxx. Coursework must be from classroom and laboratory courses. No colloquia, seminar, or special investigation credits count toward meeting the minor requirements.
Twin Cities Campus
Electrical Engineering Ph.D.

Electrical and Computer Engineering

College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Director of Graduate Studies, Department of Electrical and Computer Engineering, University of Minnesota, 3-166 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612-625-3564; fax: 612-626-1136)
Email: jager001@umn.edu
Website: http://www.ece.umn.edu

• Program Type: Doctorate
• Requirements for this program are current for Fall 2014
• Length of program in credits: 64
• This program does not require summer semesters for timely completion.
• Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The Department of Electrical and Computer Engineering offers diverse educational programs that encompass nearly all aspects of modern electrical and computer engineering, ranging from the very theoretical system and information theory to highly experimental work in novel device research and microelectronics. Emphases in the major are solid state and physical electronics, surface physics, thin films, sputtering, noise and fluctuation phenomena, quantum electronics, plasma physics, automation, power systems and power electronics theory, wave propagation, communication systems and theory, optics, lasers, fiber optics, magnetism, semiconductor properties and devices, VLSI and WSI engineering in theory and practice, network theory, signal and image processing, and computer and systems engineering. Interdisciplinary work is also available in bioelectrical sciences, control sciences, computer sciences, solar energy, applications of systems theory to urban transportation and economic planning, and biological modeling.

Students are considered for admission beginning fall semester only (except for part-time students living in Minnesota who work in industry who may apply for other terms). The deadline for applying for fall semester is December 1.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)
• partially online (between 50% to 80% of instruction is online)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.40.

Other requirements to be completed before admission:
All documents must be submitted electronically. No documents should be mailed to the department or the Graduate Admissions Office.

Every applicant must submit the University of Minnesota application for graduate admission and the Electrical Engineering Department Application (this is part of the application for graduate admission).

The department requires three letters of recommendation. Letters of recommendation must be written on university stationery and include the recommender's signature. Recommenders will be emailed a link where they can submit their letters of recommendation electronically.

Every applicant must upload a resume and a writing sample to the online department application. The writing sample should consist of a minimum of one, to a maximum of three, class papers or publications.

Special Application Requirements:
Every applicant must submit the General Test of the GRE (except University of Minnesota bachelor of electrical engineering graduates who have a GPA of 3.40 or better). The GRE Subject Test is not required for admission.

Applicants must submit their test score(s) from the following:
International applicants must submit score(s) from one of the following tests:

- **TOEFL**
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- **IELTS**
 - Total Score: 6.5
- **MELAB**
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

- 14 to 28 credits are required in the major.
- 12 to 26 credits are required outside the major.
- 24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

- A minimum GPA of 3.30 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

The Ph.D. degree requires a minimum of 40 course credits and 24 thesis credits. The Ph.D. program must include 14 credits of EE courses 5xxx and above and 12 credits from the supporting field outside of EE but within the College of Science and Engineering. The remaining 14 credits may be taken in the major field or in any supporting field within the College of Science and Engineering.

Ph.D. students who enter the department with a M.S. degree in Electrical Engineering must pass the Ph.D. Preliminary Written Examination by the end of their third semester in residence. Ph.D. students who enter with an M.S. in another field have until the end of their second year in residence to pass the exam. Students who enter with a bachelor's degree have until the end of their second year in residence to pass the exam. Students have two chances to pass the exam. The exam is typically held in November and in April.

Students choosing to minor must satisfy both EE and the outside minor department requirements.

Courses that are cross-listed with EE must be counted for major field credit.

The department limits seminar, special investigation, and GRAD 0999 registrations.

Use of 4xxx courses toward program requirements is permitted, but limited to 9 credits. 4xxx courses may not be counted toward the major field requirement. Only 4xxx credits from the approved list may be counted toward degree requirements.

All coursework must be taken A-F unless only offered S-N to be counted toward degree requirements.

Ph.D. students may obtain a M.S. degree as part of their Ph.D. degree.
Twin Cities Campus

Environmental Restoration Engineering and Science M.S.

CSENG Civil, Envrn & Geo-Eng (CEGE)

College of Science and Engineering

Link to a [list of faculty](#) for this program.

Contact Information:

Environmental Restoration Engineering and Science Graduate Program, 122 Civil Engineering, 500 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-625-5522; fax: 612-626-7750)

Email: volle001@umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program requires summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the [General Information](#) section of the catalog website for requirements that apply to all major fields.

This program is not yet admitting students.

The goal of the master of science in environmental restoration engineering and science is to produce graduates who will understand how to combine engineering with physical, biological, and social sciences in order to contribute to the process of prioritizing, designing, implementing, evaluating, and setting policy for environmental restoration projects. In short, the program aims to generate future leaders who will both succeed in practice and set the national agenda for restoring, maintaining, and sustaining the Earth-surface environment.

Program Delivery

This program is available:

- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission

The preferred undergraduate GPA for admittance to the program is 3.00.

A baccalaureate degree in a field related to ecology, civil engineering, or environmental and earth sciences. Other degrees will be accepted based on relevant experience at the discretion of the DGS.

International applicants must submit score(s) from one of the following tests:

- **TOEFL**
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 16
 - Paper Based - Total Score: 550
- **IELTS**
 - Total Score: 6.5
- **MELAB**
 - Final score: 80

Key to [test abbreviations](#) (TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the [General Information](#) section of the catalog website.

Program Requirements

Plan C: Plan C requires 30 major credits and up to null credits outside the major. The is no final exam. A capstone project is required.

Capstone Project: Students complete the capstone project either by undertaking a field research internship offered as CE 8603 - Environmental Restoration Field Research for 6 credits, or by taking one additional course from the Restoration Methods and Practice
theme area and conducting an independent research course. In both routes, students will be required to document 100 hours of project-based work. Students will complement this work with a required 10-minute oral presentation on the required Restoration Practice and Tools course.

This program may not be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.0 is required for students to remain in good standing.

Completion of the program requires a minimum of 30 credits. Three required core classes (Introduction to Stream Restoration, Ecological Restoration, and Stream Restoration Practice) account for 9 credits. An additional 15 credits are made up of approved electives chosen from four theme areas: Restoration Environmental Policy and Management; Restoration Physical Science and Engineering; Restoration Ecology, Biology, and Chemistry; and Restoration Methods and Practice. The remaining 6 credits are met by undertaking a field-based internship or additional coursework with a documented research/practice component.

The following courses are required:

CE 8601 (EEB 8601, ESCI 8601) - Introduction to Stream Restoration (3 cr)
HORT 5071 - Ecological Restoration (4 cr)
CE 8602 (EEB 8602, ESCI 8602) - Stream Restoration Practice (2 cr)
Twin Cities Campus
Environmental Restoration Engineering and Science Minor
CSENG Civil, Envirn & Geo-Eng (CEGE)
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Environmental Restoration Science and Engineering Graduate Program, 122 Civil Engineering, 500 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-625-5522; fax: 612-626-7750)
Email: volle001@umn.edu
Website: http://www.ce.umn.edu

• Program Type: Graduate minor related to major
• Requirements for this program are current for Fall 2014
• Length of program in credits (Masters): 8
• This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

This program is not yet admitting students.

The goal of the Environmental Restoration Engineering and Science Program is to produce graduates who will understand how to combine engineering with physical, biological, and social sciences in order to contribute to the process of prioritizing, designing, implementing, evaluating, and setting policy for environmental restoration projects. In short, the program aims to generate future leaders who will both succeed in practice and set the national agenda for restoring, maintaining, and sustaining the Earth-surface environment.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

A baccalaureate degree in a field related to ecology, civil engineering, or environmental and earth sciences. Other degrees will be accepted based on relevant experience at the discretion of the DGS.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

The following courses are required:
CE 8061 (EEB 8061, GEO 8061) - Introduction to Stream Restoration (3 cr)
HORT 5071 - Restoration and Reclamation Ecology (3 cr)
CE 8062 (EEB 8062, GEO 8062) - Environmental Restoration Practice and Tools (2 cr)
Financial Mathematics M.F.M.
School of Mathematics
College of Science and Engineering

Contact Information:
Program in Financial Mathematics, 127 Vincent Hall, 206 Church Street S.E., Minneapolis, MN 55455 (612-624-6391; fax: 612-624-6702)
Email: mfm@umn.edu
Website: http://www.math.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 32
- This program does not require summer semesters for timely completion.
- Degree: Master of Financial Mathematics

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The master of financial mathematics degree program helps students understand the underlying mathematics of quantitative finance. The program offers a range of courses, from theoretical to practical, including a mathematical course on stochastic processes, a practitioner's course offering hands-on application of financial software tools, and a programming course focusing on C# and MATLAB.

Courses are offered in the evenings to accommodate working professionals. The program is designed with the possibility for full-time students to complete all requirements in one year.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

A bachelor's degree from an accredited U.S. university or foreign equivalent.

Other requirements to be completed before admission:
At least one year of college freshman calculus with a grade of B or better.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Internet Based - Speaking Score: 23

Key to test abbreviations (TOEFL).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Plan C: Plan C requires 32 major credits and up to null credits outside the major. The is no final exam.

This program may not be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.
A minimum GPA of 2.80 is required for students to remain in good standing.

At least 1 semester must be completed before filing a Degree Program Form.

The M.F.M. requires 32 credits, consisting of four year-long course sequences. Each sequence has a fall term course and a spring term course, which must be taken in sequence. All courses are 4 credits. The course sequences are: FM 5011/5012 - Mathematical Background for Finance; FM 5021/5022 - Mathematical Theory Applied to Finance; FM 5031/5032 - A Practitioner's Course in Finance; and FM 5091/5092 - Computation, Algorithms, and Coding in Finance. In addition to the 32 required credits, students who either do not have a strong mathematics background or who need a refresher may be asked to take FM 5001/5002 - Preparation for Financial Mathematics.
Twin Cities Campus
Fundamentals of Quantitative Finance Postbaccalaureate Certificate
School of Mathematics
College of Science and Engineering

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The postbaccalaureate certificate in fundamentals of quantitative finance (FQF) is a 14-credit certificate with four required courses. The certificate is good preparation for the master of financial mathematics (M.F.M.) degree program.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)
• completely online (all program coursework can be completed online)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

A bachelor's degree from an accredited U.S. university or foreign equivalent.

Other requirements to be completed before admission:
Applicants should have a good background in mathematics, but not necessarily at the level of mathematics major. In particular, all applicants must have taken at least three semesters of college calculus, covering two semesters of single variable calculus and an additional semester of either multivariable calculus or linear algebra.

International applicants must submit score(s) from one of the following tests:
• TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Internet Based - Speaking Score: 23

Key to test abbreviations (TOEFL).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

A minimum GPA of 2.80 is required for students to remain in good standing.

At least 1 semesters must be completed before filing a Degree Program Form.
Students must complete the following four required courses for 14 credits:

- FM 5001 - Preparation for Financial Mathematics I (3 cr)
- FM 5002 - Preparation for Financial Mathematics II (3 cr)
- FM 5091 - Computation, Algorithms, and Coding in Finance I (4 cr)
- FM 5092 - Computation, Algorithms, and Coding in Finance II (4 cr)
Twin Cities Campus

Geoengineering M.GeoE.

CSENG Civil, Envrn & Geo-Eng (CEGE)

College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 122 Civil Engineering Building, 500 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-625-5522; fax: 612-626-7750)
Email: civesgs@umn.edu
Website: http://www.ce.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Geoengineering

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Emphases are in fundamental aspects of geomechanics and its applications. Research focuses on the use and development of discrete and continuum theories such as elasticity, plasticity, fracture mechanics, and poroelasticity for solving engineering problems. Numerical methods are being developed for obtaining solutions; experimental methods and novel apparatus are being developed for gathering physical evidence. Applications include processes of comminution, flow of granular materials, hydraulic fracturing, and nondestructive testing.

The master of geoengineering (M.GeoE.) degree is for the practicing engineer who would like to obtain an advanced degree enrolling part-time or full-time. Students who intend to proceed to the Ph.D. program, or who think they may later wish to be admitted to the Ph.D. program, should apply for the master of science program. Students are expected to follow a coherent program of coursework selected with the help of a faculty adviser and approved by the director of graduate studies. Students also must demonstrate professional competence by carrying out and defending a design project or by taking a coursework-related final oral exam (without a project).

The degree typically takes 2-3 semesters (12-18 months) to complete on a full-time basis or 6-8 semesters on a part-time basis. Students interested in pursuing doctoral studies should see the Ph.D. program in civil engineering.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

An ABET-accredited, four-year bachelor's degree in engineering is required for admission.

Other requirements to be completed before admission:
Applicants are required to submit results of the GRE in support of their applications. The TOEFL is required of foreign applicants from non-English-speaking countries. A TOEFL score of at least 550 (paper), 213 (computer), or 79 (Internet) is required for admission. Admission requirements also include three letters of recommendation and a statement of purpose that outlines the prospective student's research interests, reasons for pursuing graduate studies, and career plans after graduation. Students are admitted each semester, but applicants are encouraged to begin fall semester and to submit their applications by December 3 before the year their studies are expected to begin.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
- Internet Based - Writing Score: 21
- Internet Based - Reading Score: 19
- Paper Based - Total Score: 550

- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan A: Plan A requires 20 major credits, up to null credits outside the major, and 10 thesis credits. The final exam is oral.

Plan C: Plan C requires 30 major credits and up to null credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

The M.GeoE. requires at least 30 credits and is offered under two plans. Plan A requires at least 20 course credits and preparation of a thesis/design project (10 cr). The thesis/design project must be carried out by the student in consultation with a faculty adviser. Plan C is a coursework-only degree program and requires at least 30 course credits.
Twin Cities Campus
Geoengineering M.S.
CSENG Civil, Envirn & Geo-Eng (CEGE)
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 122 Civil Engineering Building, 500 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-625-5522; fax: 612-626-7750)
Email: civesgs@umn.edu
Website: http://www.ce.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Emphases are in fundamental aspects of geomechanics and its applications. Research focuses on the use and development of discrete and continuum theories such as elasticity, plasticity, fracture mechanics, and poroelasticity for solving engineering problems. Numerical methods are being developed for obtaining solutions; experimental methods and novel apparatus are being developed for gathering physical evidence. Applications include processes of communication, flow of granular materials, hydraulic fracturing, and nondestructive testing.

The master of science (M.S.) degree balances education in engineering fundamentals and design with research and development. It is designed for students wishing to pursue a career in industry or to continue toward a Ph.D. degree.

Students interested in pursuing doctoral studies should see the Ph.D. program in civil engineering.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

A bachelor's degree in engineering, basic science, or mathematics is preferred.

Other requirements to be completed before admission:
Applicants are required to submit results of the GRE in support of their applications. A preferred TOEFL score of 550 (paper), 213 (computer), or 79 (Internet) is required of foreign applicants from non-English-speaking countries. Admission requirements also include three letters of recommendation and a statement of purpose that outlines the prospective student's research interests, reasons for pursuing graduate studies, and career plans after graduation. Students are admitted each semester, but applicants are strongly encouraged to submit their applications by December 3 in order to begin the following fall semester.

Special Application Requirements:
Admission depends primarily on the applicant's academic record and letters of recommendation. Applicants who lack geoengineering training are often required to complete at least one appropriate course from the undergraduate program. Graduate degree credit is not awarded for such preparatory work.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21

© 2005 by the Regents of the University of Minnesota
The University of Minnesota is an equal opportunity educator and employer.
Information current as of January 21, 2015
- Internet Based - Reading Score: 19
- Paper Based - Total Score: 550
 ● IELTS
 - Total Score: 6.5
 ● MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan A: Plan A requires 20 major credits, up to null credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 30 major credits and up to null credits outside the major. The final exam is oral.

Plan C: Plan C requires 30 major credits and up to null credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

The M.S. requires at least 30 credits and is offered under three plans. Plan A emphasizes research and preparation of a thesis; Plan B emphasizes coursework and a project; Plan C is coursework only. The thesis is written on a research project carried out in consultation with a faculty adviser. Under Plan B, students complete one to three Plan B papers as determined by the faculty adviser. Plan B papers can include computer programs, annotated bibliographies, field investigations, and analysis/design of special engineering problems. Plan A requires at least 20 course credits and 10 thesis credits. Plan B requires a minimum of 30 credits, which includes at least 27 course credits, and may include a maximum of 3 credits of CE 8094 for the Plan B project. Plan C requires 30 course credits and must include at least 2 courses at the 8xxx-level. A program typically takes 18 to 24 months to complete.
Twin Cities Campus

Geoengineering Minor
CSENG Civil, Envrn & Geo-Eng (CEGE)

College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 122 Civil Engineering Building, 500 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-625-5522; fax: 612-626-7750)
Email: civesgs@umn.edu
Website: http://www.ce.umn.edu

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Emphases are in fundamental aspects of geomechanics and its applications. Research focuses on the use and development of discrete and continuum theories such as elasticity, plasticity, fracture mechanics, and poroelasticity for solving engineering problems. Numerical methods are being developed for obtaining solutions; experimental methods and novel apparatus are being developed for gathering physical evidence. Applications include processes of comminution, flow of granular materials, hydraulic fracturing, and nondestructive testing.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

For a master's minor, two or more 5xxx to 8xxx courses from the same area of geoengineering are required, for a total of 6 or more credits.
Twin Cities Campus
Industrial and Systems Engineering M.S.I.S.Y.E.
Industrial and Systems Engineering
College of Science and Engineering

Contact Information:
Industrial and Systems Engineering Graduate Program, University of Minnesota, 1120 Mechanical Engineering, 111 Church Street
S.E., Minneapolis, MN 55455 (612-625-2009; fax 612-624-2010)
Email: gradinfo@ie.umn.edu
Website: http://www.ie.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30 to 32
- This program does not require summer semesters for timely completion.
- Degree: Master of Science in Industrial & Systems Engr

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The industrial and systems engineering (ISyE) program offers coursework and research in industrial and systems engineering, operations research, and human factors. Special emphasis is on methodologies for design, planning, and management of service and manufacturing systems. Examples of research applications include logistics, transportation, healthcare delivery systems, revenue management, and supply chain management.

The Department of Industrial & Systems Engineering (ISyE) offers an MS degree with two tracks; the Industrial Engineering (IE) track and the Systems Engineering (SE) track, as well as a PhD degree. MS degree applicants must indicate which track they are applying for on the application form. Note that the admission requirements for the two tracks are different. In addition, the ISyE program also offers a dual MS in ISyE and Civil Engineering (Transportation Engineering focus).

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

A baccalaureate degree in engineering or a closely related field is required.

Other requirements to be completed before admission:
For applicants to the SE Track, at least two years of professional work experience in a technical field are required. Promising candidates with less experience will be considered under exceptional circumstances. Applicants must submit three letters of recommendation and a personal statement. In addition to the academic record, the professional record of the applicant and the letters of recommendation carry weight in admission decisions. A GRE score is not required.

Special Application Requirements:
All application materials should be submitted electronically through the ApplyYourself application system.

Applicants to the IE Track must submit a GRE score. Letters of recommendation are not required, but are highly recommended if you want to be considered for financial aid.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79

© 2005 by the Regents of the University of Minnesota
The University of Minnesota is an equal opportunity educator and employer.
Information current as of January 21, 2015
Key to test abbreviations (GRE, TOEFL, IELTS).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 16 to 24 major credits and 6 to 14 credits outside the major. The final exam is oral.

Plan C: Plan C requires 16 to 26 major credits and 6 to 16 credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

At least 1 semesters must be completed before filing a Degree Program Form.

The Master of Science in Industrial and Systems Engineering (M.S.I.Sy.E.) is offered with two tracks. The industrial engineering (IE) track has three options: Plan A (thesis), Plan B (project), or Plan C (coursework). Plans A and B require 30 credits and Plan C requires 32 credits. At least 14 course credits are required in the major if Plan A is chosen; and 16 course credits in the major if Plan B or Plan C is chosen. For all plans, at least 6 course credits in a minor or related field and at least 1 credit of graduate seminar must be included. The remaining credits may be taken in the major field or any supporting field.

The systems engineering (SE) track is a coursework-only option (Plan C) requiring 30 credits. It requires at least 17 course credits in the major field, and 6 course credits in a minor or related field. The remaining 7 credits may be taken in the major or in any supporting field.

All M.S.I.Sy.E. students must complete a zero-credit Research Ethics and Professional Conduct course offered by the Department of Mechanical Engineering.

Joint- or Dual-degree Coursework: Dual M.S. in ISyE and Civil Engineering (Transportation Engineering Focus); Student may take a total of 15 credits in common among the academic programs.

Program Sub-plans

Students are required to complete one of the following sub-plans. Students may not complete the program with more than one sub-plan.

Industrial Engineering

Plan A (thesis) Option: Required courses include IE 5531, IE 8532, and one of the following courses—IE 5545, 5551, or 8541. Students may replace a required course with a qualifying replacement course if they have taken the equivalent of the required course elsewhere. A list of qualifying replacements is available on the ISyE program web page. Students must also take 10 thesis credits.

Plan B (non-thesis) Option: Required courses include IE 5531, IE 8532, and two of the following courses—IE 5545, 5551, or 8541. Students may replace a required course with a qualifying replacement course if they have taken the equivalent of the required course elsewhere. A list of qualifying replacements is available on the ISyE program web page. Students must either take the Plan B course IE 8951/8953, or complete one to three Plan B papers, determined in consultation with the adviser.

Plan C (coursework) Option: Required courses include IE 5531, IE 8532, and two of the following courses—IE 5545, 5551, or 8541. Students may replace a required course with a qualifying replacement course if they have taken the equivalent of the required course elsewhere. A list of qualifying replacements is available on the ISyE program web page.
Systems Engineering
Required courses are IE 5111, 5112, 5113, 5541, and 5553.
Twin Cities Campus
Industrial and Systems Engineering Minor
Industrial and Systems Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Industrial and Systems Engineering Graduate Program, University of Minnesota, 1120 Mechanical Engineering, 111 Church Street S.E., Minneapolis, MN 55455 (612-625-2009; fax: 612-624-2010)
Email: gradinfo@ie.umn.edu
Website: http://www.ie.umn.edu

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The industrial and systems engineering (ISyE) program offers coursework and research in industrial and systems engineering, operations research, and human factors. Special emphasis is on methodologies for design, planning, and management of service and manufacturing systems. Examples of research applications include logistics, transportation, healthcare delivery systems, revenue management, and supply chain management.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

At least 6 credits in industrial and systems engineering are required for a master's minor. At least 12 credits in industrial and systems engineering are required for a doctoral minor.
Twin Cities Campus
Industrial and Systems Engineering Ph.D.
Industrial and Systems Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Industrial and Systems Engineering Graduate Program, University of Minnesota, 1120 Mechanical Engineering, 111 Church Street S.E., Minneapolis, MN 55455 (612-625-2009; fax: 612-624-2010)
Email: gradinfo@ie.umn.edu
Website: http://www.ie.umn.edu

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 68
- This program does not require summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The industrial and systems engineering (IsyE) program offers coursework and research in industrial and systems engineering, operations research, and human factors. Special emphasis is on methodologies for design, planning, and management of service and manufacturing systems. Examples of research applications include logistics, transportation, healthcare delivery systems, revenue management, and supply chain management.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

A baccalaureate degree in engineering or a closely related field is required.

Special Application Requirements:
All application materials should be submitted electronically through the ApplyYourself application system. Students whose native language is not English are required to submit scores from one of the following English proficiency examinations: TOEFL, MELAB, or IELTS. The GRE General Test is required for students applying to the PhD program.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
- Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5

Key to test abbreviations (GRE, TOEFL, IELTS).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements
32 credits are required in the major.
12 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

At least 2 semesters must be completed before filing a Degree Program Form.

The Ph.D. degree requires at least 44 course credits, including at least 12 course credits in a minor field or supporting program, and at least 2 credits of graduate seminar; 24 thesis credits are also required. Required courses include IE 5531, IE 8532, and two of the following courses: IE5545, 5551, or 8541. Students may replace a required course with a qualifying replacement course if they have taken the equivalent of the required course elsewhere. A list of qualifying replacements is available on the ISyE program web page.

All Ph.D. students must complete a zero-credit Research Ethics and Professional Conduct course offered by the Department of Mechanical Engineering.

Program Sub-plans
A sub-plan is not required for this program.
Students may not complete the program with more than one sub-plan.

Industrial Engineering
Twin Cities Campus
Infrastructure Systems Management and Engineering M.S.I.S.M.E
Technological Leadership Institute
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Technological Leadership Institute, University of Minnesota, 290 McNamara Alumni Center, 200 Oak Street SE, Minneapolis MN 55455
(612-624-5474; fax: 612-624-7510)
Email: isme@umn.edu
Website: http://tli.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Science in Infrastructure Sys Mgmt & Eng

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Students are no longer being accepted into this program. Program requirements below are for current students only.

The master of science in infrastructure systems management and engineering (M.S.I.S.M.E.) focuses on developing management and engineering tools that address issues in local, county, and state infrastructure. It is an interdisciplinary program offered through the College of Science and Engineering's Technological Leadership Institute. The two-year, professional-format program focuses on key knowledge areas of engineering, technology, and science; management of personnel, projects, and programs; communications; governance; and synthesis. Fields of application include transportation engineering/pavement management; water resources/environmental engineering; municipal engineering; construction and maintenance; computer applications/asset management; parks, recreation and open space. The degree is offered in a hybrid online format, with in-person residencies scheduled over the course of the program.

Program Delivery
This program is available:
- primarily online (at least 80% of the instruction for the program is online with short, intensive periods of face-to-face coursework)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

Other requirements to be completed before admission:
Students are no longer being accepted into this program.

A B.S. degree in engineering, plus a minimum of one year of professional work experience in an infrastructure area, or a B.S. degree in a related science or technology field and a minimum of two years professional work experience in an infrastructure area are required.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements

Plan B: Plan B requires 30 major credits and up to null credits outside the major. The final exam is oral. A capstone project is required.

Capstone Project: The capstone integrates knowledge from courses in the master’s program with job experience. Students will prepare a proposal, conduct the project and report the results in written and oral form. The project will involve some aspect of the design, management, and operation of some feature of infrastructure. Students must register for the capstone course ISME 8105(3 credits).

This program may not be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.

A minimum GPA of 3.25 is required for students to remain in good standing.

The M.S.I.S.M.E. requires 30 credits. In addition, students must complete a capstone project to address an on-the-job issue or problem.
Twin Cities Campus
Management of Technology M.S.M.O.T.
Technological Leadership Institute
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Management of Technology Graduate Program, Technological Leadership Institute, University of Minnesota, 290 McNamara Alumni Center, 200 Oak Street SE, Minneapolis MN 55455 (612-624-5474; fax: 612-624-7510)
Email: MOT@umn.edu
Website: http://www.tli.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 36
- This program does not require summer semesters for timely completion.
- Degree: Master of Science in Management of Technology

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The master of science in the management of technology (M.S.MOT.) program is administered by the College of Sciences and Engineering's Technological Leadership Institute (TLI). The two-year, executive-format program integrates the fields of technology and management and provides working engineers and scientists with management knowledge and skills needed to assume a technical leadership role within their organizations. The program focuses on management in technology-based environments in traditional and emerging industries. The curriculum includes technical and advanced management courses, such as pivotal technologies, technology forecasting, project management, management of innovation, intellectual property management, and strategic management of technology. The core management curriculum includes areas such as finance, marketing, accounting, strategic planning and decision making, and conflict management. Students proceed through the program and advance as a cohort, taking a prescribed sequence of courses together. Case studies, class discussions, and study-group interaction stimulate the learning process. Students also participate in off-campus residencies, including an international residency; complete individual and team projects; and develop final projects as part of a capstone course. Most students receive corporate financial support.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A bachelor's degree in an engineering, science, or other technology-related field from an accredited program.

Other requirements to be completed before admission:
Applicants should have completed coursework (or show proficiency) in economics, mathematical modeling, statistics, and computer literacy.

Special Application Requirements:
At least 5 years of professional experience in the applicant's technical field. (In exceptional circumstances, promising candidates with less experience may be considered.) Applicants must submit three letters of recommendation, a resume, and a statement of purpose.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80
Key to test abbreviations (TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan B: Plan B requires 36 major credits and up to null credits outside the major. The final exam is oral. A capstone project is required.

Capstone Project: The capstone project consists of an independent, original investigation requiring between 110 and 130 hours of effort. Students use concepts and methods learned in the MOT program to research and develop an industry-based product, project, process, or venture. The capstone project enables students to directly apply their MOT education at work.

This program may not be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.

A minimum GPA of 3.25 is required for students to remain in good standing.

The M.S.MOT. requires 36 credits. In addition to course requirements, students must complete an oral exam and a written report for the capstone project (MOT 8234).
Twin Cities Campus

Management of Technology Minor

Technological Leadership Institute

College of Science and Engineering

Link to a [list of faculty](#) for this program.

Contact Information:

Technological Leadership Institute, College of Science and Engineering, University of Minnesota, Suite 290 McNamara Alumni Center, 200 Oak Street S.E., Minneapolis MN 55455

Phone: 612-624-5747

Fax: 612-624-7510

Email: mot@umn.edu

Website: http://www.tli.umn.edu

- **Program Type:** Graduate minor related to major
- **Requirements for this program are current for Fall 2014**
- **Length of program in credits (Masters):** 6
- **Length of program in credits (Doctorate):** 12
- **This program does not require summer semesters for timely completion.**

Along with the program-specific requirements listed below, please read the [General Information](#) section of the catalog website for requirements that apply to all major fields.

The management of technology program is administered by the Technological Leadership Institute (TLI) in the College of Science and Engineering. The program integrates the fields of technology and management, to provide engineers and scientists preparing for a career in industry with the business knowledge and interpersonal skills needed to assume a leadership role within their organizations. The program focuses on leadership in technology-based environments in traditional and emerging industries. The curriculum includes the basics of business, such as finance, marketing, operations, managerial decision-making and strategic planning. It also covers technology forecasting, project management, new product management processes, leading innovation, intellectual property, and strategic management of technology. Each class will include exercises that inform students on those business topics, and give them an opportunity to practice the fundamental skills of communications, teamwork, and project management.

Program Delivery

This program is available:

- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission

A bachelor's degree in an engineering, science, or other technology-related field from an accredited program.

Special Application Requirements:

Applicants for the minor must be enrolled in a graduate-level degree program at the University of Minnesota and have director of graduate studies approval.

For an online application or for more information about graduate education admissions, see the [General Information](#) section of the catalog website.

Program Requirements

Use of 4xxx courses towards program requirements is not permitted.

The following courses are required for the minor: MOT 5001 Technological Business Fundamentals (2 credits) and MOT 5002 Creating Technological Innovation (2 credits). The remaining credits can be taken from the list of approved electives.

MOT minor courses cannot be counted towards the Master of Science in Management of Technology degree requirements.

Course Group 0
Twin Cities Campus
Materials Science and Engineering M.Mat.S.E.
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN 55455 (612-625-0382; fax: 612-626-7246)
Email: cemsgrad@umn.edu
Website: http://www.cems.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Materials Science And Engineering

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Graduate courses offered by the Chemical Engineering and Materials Science (CEMS) Department cover core areas of materials science and engineering (structure and symmetry of materials; thermodynamics and kinetics; electronic, optical, and magnetic properties of materials; and mechanical properties of materials). In addition, several specialized topics are offered, including rheology, coating process fundamentals, process control, finite element methods of computer-aided analysis, ceramics, polymers, materials design and performance, materials processing, corrosion, contact and fracture properties of materials, electron microscopy, thin films and interfaces, composites, electrochemical engineering, solid state reaction kinetics, electronic structure of materials, organic semiconductors, electronic ceramics, dislocations and interfaces, epitaxial thin film growth, and the science of porous media.

The master of materials science and engineering (M.Mat.S.E.), also known as the professional master's, is designed for working professionals who are interested in obtaining a master's degree part time. This degree requires a design project. Part-time students may also choose the M.S.Mat.S.E. Plan C, which is coursework only.

The CEMS department focuses on the Ph.D. and does not generally admit students directly to the M.S.Mat.S.E. Plan A degree, which is a thesis based master's and is intended for current graduate students who choose not to seek a Ph.D.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A bachelor’s degree in materials science or other related field.

Other requirements to be completed before admission:
The professional master's in engineering degree is designed for employees of local industries who wish to pursue their studies part-time. No financial support is available. Applicants should contact the program before applying for admission.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 560
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (TOEFL, IELTS, MELAB).
For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is oral.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 2.80 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

All master's students must complete the four required core courses, MATS 8001, 8002, 8003, and 8004. In addition, master's students must complete a total of 30 credits, including 14 from the major program (this includes the 4 required courses), 6 from the minor or related program, and 10 thesis credits (for the M.Mat.S.E., thesis credits are used for the design project). Precise coursework plans are approved by the director of graduate studies. The minimum required GPA for completion is 2.80.

In addition to their coursework, M.Mat.S.E. students are required to complete a design project. This work-related design project consists of an in-depth study of an engineering design. It need not represent a publishable research project. While the amount of work should be the same as that required for an M.S. thesis, the project can contain elements that the thesis would not, such as economic considerations, design consultation, and social relevance. The written design report must be approved by a three-person faculty committee. The final exam consists of the written design report and an oral presentation to the faculty committee.
Twin Cities Campus
Materials Science and Engineering M.S.Mat.S.E.
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN 55455 (612-625-0382; fax: 612-626-7246)
Email: cemsgrad@umn.edu
Website: http://www.cems.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program requires summer semesters for timely completion.
- Degree: Master of Science Materials Science And Engr

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The CEMS Department offers two types of master's degrees: the M.S.Mat.S.E. (Plan A or C) and the M.Mat.S.E. degree, also known as the professional master's. The M.S.Mat.S.E. Plan A degree is a thesis-based master's and is generally reserved only for current graduate students who choose not to seek a Ph.D. Working professionals who are interested in obtaining a master's degree part time should follow the requirements for the M.Mat.S.E. degree, which requires a design project, or the M.S.Mat.S.E. Plan C, which is coursework only.

Graduate courses offered by CEMS cover core areas of materials science and engineering (structure and symmetry of materials; thermodynamics and kinetics; electronic, optical, and magnetic properties of materials; and mechanical properties of materials). In addition, several specialized topics are offered, including rheology, coating process fundamentals, process control, finite element methods of computer-aided analysis, ceramics, polymers, materials design and performance, materials processing, corrosion, contact and fracture properties of materials, electron microscopy, thin films and interfaces, composites, electrochemical engineering, solid state reaction kinetics, electronic structure of materials, organic semiconductors, electronic ceramics, dislocations and interfaces, epitaxial thin film growth, and the science of porous media.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A bachelor's degree in materials science or other related field.

Special Application Requirements:
Note: With the exception of the professional master's degree (the M.Mat.S.E.) and the M.S.Mat.S.E. Plan C, the CEMS Department focuses on the Ph.D. and does not generally admit students directly to the M.S.Mat.S.E. Plan A degree.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 560
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80
Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is written and oral.

Plan C: Plan C requires 18 major credits and 12 credits outside the major. There is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 2.80 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

The M.S. Mat. S.E. is offered under Plan A (with thesis) or Plan C (coursework only); both require 30 credits.

All master's students must complete four required core courses: MATS 8001, 8002, 8003, and 8004. Plan A master's students complete 14 credits from the major program (this includes the 4 required courses), 6 from the minor or related program and 10 thesis credits. Plan C master's students complete 18 credits from the major program (this includes the 4 required courses) and 12 credits in one or more related fields.

Precise coursework plans are approved by the director of graduate studies. The minimum required GPA for completion is 2.80.
Twin Cities Campus
Materials Science and Engineering Minor
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN 55455 (612-625-0382; fax: 612-626-7246)
Email: cemsgrad@umn.edu
Website: http://www.cems.umn.edu

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Graduate courses offered by the Chemical Engineering and Materials Science (CEMS) Department cover core areas of materials science and engineering (structure and symmetry of materials; thermodynamics and kinetics; electronic, optical, and magnetic properties of materials; and mechanical properties of materials). In addition, several specialized topics are offered, including rheology, coating process fundamentals, process control, finite element methods of computer-aided analysis, ceramics, polymers, materials design and performance, materials processing, corrosion, contact and fracture properties of materials, electron microscopy, thin films and interfaces, composites, electrochemical engineering, solid state reaction kinetics, electronic structure of materials, organic semiconductors, electronic ceramics, dislocations and interfaces, epitaxial thin film growth, and the science of porous media.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

For a minor in materials science, students must successfully complete at least two (for a master's) and four (for a PH.D.) of the core graduate courses in the minor program and obtain approval by the director of graduate studies. Core courses in materials science and engineering are: MATS 8001, 8002, 8003, and 8004.
Twin Cities Campus
Materials Science and Engineering Ph.D.
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Department of Chemical Engineering and Materials Science and Engineering, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN 55455 (612-625-0382; fax: 612-626-7246)
Email: cemsgrad@umn.edu
Website: http://www.cems.umn.edu

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 57
- This program requires summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Graduate courses offered by the Chemical Engineering and Materials Science (CEMS) Department cover core areas of materials science and engineering (structure and symmetry of materials; thermodynamics and kinetics; electronic, optical, and magnetic properties of materials; and mechanical properties of materials). In addition, several specialized topics are offered, including rheology, coating process fundamentals, process control, finite element methods of computer-aided analysis, ceramics, polymers, materials design and performance, materials processing, corrosion, contact and fracture properties of materials, electron microscopy, thin films and interfaces, composites, electrochemical engineering, solid state reaction kinetics, electronic structure of materials, organic semiconductors, electronic ceramics, dislocations and interfaces, epitaxial thin film growth, and the science of porous media.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A bachelor's degree in materials science or other related field.

Special Application Requirements:
Applicants must submit scores from the General Test of the GRE, three letters of recommendation from persons familiar with their scholarship and research potential, a complete set of official transcripts, and a clearly written statement of career interests, goals, and objectives. International students are required to provide TOEFL results. Submission of all application materials by January 1 is strongly encouraged to ensure priority consideration for fellowships and assistantships; late applications are considered if space is available.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 560
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements
21 credits are required in the major.
12 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

At least 3 semesters must be completed before filing a Degree Program Form.

All Ph.D. students must complete the four required core courses, MATS 8001, 8002, 8003, and 8004. In addition, Ph.D. students must complete a total of 57 credits, including 21 from the major program (this includes the 4 required courses), 12 from the minor or related program, and 24 thesis credits. Precise coursework plans are approved by the director of graduate studies. The minimum required GPA for completion is 3.00.
Twin Cities Campus
Mathematics M.S.
School of Mathematics
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street S.E., Minneapolis, MN 55455 (612-624-6391; fax: 612-624-6702)
Email: gradprog@math.umn.edu
Website: http://www.math.umn.edu

• Program Type: Master's
• Requirements for this program are current for Fall 2014
• Length of program in credits: 30
• This program does not require summer semesters for timely completion.
• Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The School of Mathematics offers a master of science (M.S.) in mathematics. Students may also earn the M.S. degree with emphasis in applied and industrial mathematics or with emphasis in mathematics education.

Special areas of research include ordinary and partial differential equations; probability; real, complex, harmonic, functional, and numerical analysis; differential and algebraic geometry; topology; number theory; commutative algebra; group theory; logic; combinatorics; mathematical physics; and applied and industrial mathematics, mathematical biology, and dynamical systems.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
Undergraduate degree in mathematics or equivalent.

Other requirements to be completed before admission:
Applicants should have the prerequisite material of linear algebra, advanced calculus and differential equations, and should be ready for higher level courses in analysis and algebra. The GRE Math Subject test is strongly recommended.

International applicants must submit score(s) from one of the following tests:
• TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19

Key to test abbreviations (TOEFL).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 15 to 30 major credits and 0 to 15 credits outside the major. The final exam is oral.

This program may be completed with a minor.
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

The M.S. is offered under Plan A and Plan B. Plan A requires 14 credits in Mathematics, including one sequence of two 8xxx-level courses in the student's concentration area, 6 credits outside the major, and 10 thesis credits.

Plan B allows more breadth; students complete at least 30 credits, half of which may be in a related area outside of Mathematics. Two sequences of year-long 8xxx-level courses, one in the student's concentration area, must be included.
Twin Cities Campus
Mathematics Minor
School of Mathematics
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street S.E., Minneapolis, MN 55455 (612-624-6391, fax: 612-624-6702)
Email: gradprog@math.umn.edu
Website: http://www.math.umn.edu

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The School of Mathematics offers a minor for both the master's and the Ph.D.

Special areas of research include ordinary and partial differential equations; probability; real, complex, harmonic, functional, and numerical analysis; differential and algebraic geometry; topology; number theory; commutative algebra; group theory; logic; combinatorics; mathematical physics; and applied and industrial mathematics, mathematical biology, and dynamical systems.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

The master's minor requires a minimum of 6 credits, consisting of two 5xxx or 8xxx level courses.

The Ph.D. minor requires a minimum of 12 credits, consisting of four 5xxx or 8xxx level courses.

Courses must be completed with a grade higher than B- to satisfy the requirements.
We recommend that you consult the director of graduate studies in Mathematics in advance for course approval.
Twin Cities Campus
Mathematics Ph.D.
School of Mathematics
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
127 Vincent Hall, 206 Church Street S.E., Minneapolis, MN 55455 (612-624-6391; fax: 612-624-6702)
Email: gradprog@math.umn.edu
Website: http://www.math.umn.edu

• Program Type: Doctorate
• Requirements for this program are current for Fall 2014
• Length of program in credits: 60
• This program does not require summer semesters for timely completion.
• Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The School of Mathematics offers a Ph.D. in mathematics, and a Ph.D. in mathematics with emphasis in applied and industrial mathematics.

Special areas of research include ordinary and partial differential equations; probability; real, complex, harmonic, functional, and numerical analysis; differential and algebraic geometry; topology; number theory; commutative algebra; group theory; logic; combinatorics; mathematical physics; and applied and industrial mathematics, mathematical biology, and dynamical systems.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
Undergraduate degree in mathematics or equivalent.

Other requirements to be completed before admission:
Applicants should have the prerequisite material of abstract algebra and real analysis, and should be ready for graduate level courses in Mathematics. The GRE Math Subject test is strongly recommended

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 100
 - Internet Based - Speaking Score: 23

Key to test abbreviations (TOEFL).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
24 credits are required in the major.
12 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.

Language Requirement: French, German, Italian, or Russian
A minimum GPA of 3.00 is required for students to remain in good standing.

The Ph.D. requires 24 credits in mathematics core courses, 12 credits in a minor or supporting field, and 24 thesis credits. If a supporting program is chosen, it may consist partly or entirely of mathematics courses outside the student's major research area. Mathematics core courses can be passed by examination; however, students who test out are still required to complete 12 course credits in mathematics and 12 credits in a supporting program to earn a Ph.D.

The Ph.D. preliminary written examination, given twice each year, covers real analysis, complex analysis, algebra, and manifolds and topology. Students are expected to pass the exam by the end of their second year. After passing the exam and completing required coursework, students may take the preliminary oral exam, which they are expected to pass by the end of their fourth year.

Reading proficiency is required in one of the following: French, German, Italian, or Russian

For more information, see the program's website at www.math.umn.edu/grad.
Twin Cities Campus
Mechanical Engineering M.S.M.E.
Mechanical Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Mechanical Engineering and Industrial Engineering Graduate Programs, University of Minnesota, 1120 Mechanical Engineering, 111 Church Street S.E., Minneapolis, MN 55455 (612-625-2009; fax: 612-624-2010)
Email: gradinfo@me.umn.edu
Website: http://www.me.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Science in Mechanical Engineering

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Coursework and research for all graduate degrees are offered in bioengineering; biomechanics; combustion; computer-aided design; computer-aided manufacturing; computer graphics; control systems; design; energy conservation; environmental control; environmental engineering; fluid mechanics; heat and mass transfer; history of science and technology; human factors engineering; industrial engineering; innovative methodologies; integration of structural and environmental systems; lubrication; manufacturing engineering; particle technology; plasma chemistry; plasma heat transfer; power, propulsion, and applied thermodynamics; socioeconomic systems; solar energy; solar processing and thermochemistry; statistics; structures; systems dynamics; technology assessment; thermal energy storage; thermal environmental engineering; thermodynamics; transportation; tribology; vibration; and interdisciplinary finite element methodology. Additional instructional and research programs can be formulated.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
- IELTS
 - Total Score: 6.5

Key to test abbreviations (TOEFL, IELTS).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 14 major credits and 16 credits outside the major. The final exam is oral.

Plan C: Plan C requires 24 major credits and 6 credits outside the major. The is no final exam.
This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

The M.S.M.E. requires at least 30 credits and is offered under three plans. Plan A (thesis) requires 14 credits in the major, 6 additional graduate level credits, and 10 thesis credits. Plan B (project) requires 14 credits in the major, 16 additional graduate level credits, plus completion of a project or 1-3 Plan B papers, determined in consultation with the adviser. Plan C (coursework) requires 24 credits in the major and 6 additional graduate level credits. All three plans require completion of 1-2 graduate seminar credits and one research and professional ethics course (3 credit max), which are included in the 30 credit total.
Twin Cities Campus
Mechanical Engineering Minor
Mechanical Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Mechanical Engineering and Industrial Engineering Graduate Programs, University of Minnesota, 1120 Mechanical Engineering, 111 Church Street S.E., Minneapolis, MN 55455 (612-625-2009; fax: 612-624-2010)
Email: gradinfo@me.umn.edu
Website: http://www.me.umn.edu

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Coursework and research for all graduate degrees are offered in bioengineering; biomechanics; combustion; computer-aided design; computer-aided manufacturing; computer graphics; control systems; design; energy conservation; environmental control; environmental engineering; fluid mechanics; heat and mass transfer; history of science and technology; human factors engineering; industrial engineering; innovative methodologies; integration of structural and environmental systems; lubrication; manufacturing engineering; particle technology; plasma chemistry; plasma heat transfer; power, propulsion, and applied thermodynamics; socioeconomic systems; solar energy; solar processing and thermochemistry; statistics; structures; systems dynamics; technology assessment; thermal energy storage; thermal environmental engineering; thermodynamics; transportation; tribology; vibration; and interdisciplinary finite element methodology. Additional instructional and research programs can be formulated.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

At least 6 credits in mechanical engineering are required for a master's minor. At least 12 credits in mechanical engineering are required for a doctoral minor.
Twin Cities Campus
Mechanical Engineering Ph.D.
Mechanical Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Mechanical Engineering and Industrial Engineering Graduate Programs, University of Minnesota, 1120 Mechanical Engineering, 111 Church Street S.E., Minneapolis, MN 55455 (612-625-2009; fax: 612-624-2010)
Email: gradinfo@me.umn.edu
Website: http://www.me.umn.edu

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 62
- This program does not require summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Coursework and research for all graduate degrees are offered in bioengineering; biomechanics; combustion; computer-aided design; computer-aided manufacturing; computer graphics; control systems; design; energy conservation; environmental control; environmental engineering; fluid mechanics; heat and mass transfer; history of science and technology; human factors engineering; industrial engineering; innovative methodologies; integration of structural and environmental systems; lubrication; manufacturing engineering; particle technology; plasma chemistry; plasma heat transfer; power, propulsion, and applied thermodynamics; socioeconomic systems; solar energy; solar processing and thermochemistry; statistics; structures; systems dynamics; technology assessment; thermal energy storage; thermal environmental engineering; thermodynamics; transportation; tribology; vibration; and interdisciplinary finite element methodology. Additional instructional and research programs can be formulated.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5

Key to test abbreviations (GRE, TOEFL, IELTS).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
18 credits are required in the major.
20 credits are required outside the major.
24 thesis credits are required.
This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

At least 2 semesters must be completed before filing a Degree Program Form.

The Ph.D. requires at least 38 course credits, including 18 credits in the major and 20 additional graduate level credits. Students must complete 2-3 graduate seminar credits and one research and professional ethics course (3 credit max), which are included in the 38 credit total. At least 12 credits must be at the 8000-level. 24 thesis credits are also required.
Twin Cities Campus

Medical Device Innovation M.S.
Technological Leadership Institute
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Medical Device Innovation Program, Technological Leadership Institute, University of Minnesota, Suite 290 McNamara Alumni Center, 200 Oak Street S.E., Minneapolis, MN 55455 (612-624-5747; fax: 612-624-7510)
Email: mdi@umn.edu
Website: http://www.tli.umn.edu/

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 34
- This program requires summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The Master of Science in Medical Device Innovation (MDI) program is an interdisciplinary program administered by the College of Science and Engineering's Technological Leadership Institute (TLI). The program is comprised of courses in the core areas of Technology Innovation Management and Medical Technology Macro Environment, and enhanced with hands-on innovation experience through practicums at the Medical Device Center. Elective courses from the College of Science and Engineering and Carlson School of Management will further develop depth in technical and medical industry concentration areas. The 14-month program will specifically draw upon the fields of technology innovation, product development, project management, business management, life-cycle management, intellectual property, regulatory affairs, clinical needs, entrepreneurship, human factors, emerging trends, globalization, reimbursement, and public policy to teach and investigate medical devices and the rapidly growing global medical technology industry. This program will provide students with a systemic understanding of end-to-end medical device innovation dynamics that includes but goes well beyond the traditional technology focus.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

A bachelor's degree in a related field, such as biological or physical sciences, engineering, computer science, mathematics, or statistics.

Other requirements to be completed before admission:
Applicants must have undergraduate degree in science and engineering, with at least 2-5 years of work experience.

Minimum requirements include one year of calculus, probability/statistics, and two science or engineering courses.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

The preferred English language test is Test of English as Foreign Language
Key to test abbreviations (TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan B: Plan B requires 25 major credits and 9 credits outside the major. The final exam is written and oral. A capstone project is required.

Capstone Project: The capstone project is an independent, original, and applied investigation on a relevant subject, problem or issue in the area of Medical Device Development. An integrative applied project to provide students the opportunity to expand their ability to enact the knowledge and technical learning acquired in the courses leading up to the capstone. The capstone integrative experience and the material in other MDI courses, taken together, will provide students with the motivation and skills to perform their professional roles in new ways, ways that will initiate and sustain change even at the level of the broader institutional context of governance in which they must function. The culmination of the program will be submission of a capstone project.

This program may be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.

A minimum GPA of 3.25 is required for students to remain in good standing.

At least 2 semesters must be completed before filing a Degree Program Form.

All students will be required to complete 34 credits consisting of 11 credits in TLI designed Technology Innovation Management courses, 6 credits in the Medical Device Innovation Practicum, 6 credits in Medical Technology Macro Environments, 2 credits through the Capstone course and project, and 9 credits in Medical-Technical subject-specific electives outside the major field.
Twin Cities Campus
Nanoparticle Science and Engineering Minor
Mechanical Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Graduate Minor Program in Nanoparticle Science and Engineering, Integrative Graduate Education and Research Traineeship Program, University of Minnesota, 2101 Mechanical Engineering, 111 Church Street S.E., Minneapolis, MN 55455 (612-625-4028; fax: 612-625-4344)
Website: http://www.nanoigert.umn.edu

- Program Type: Graduate free-standing minor
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The Integrative Graduate Education and Research Traineeship Program offers a minor in nanoparticle science and engineering for M.S. and Ph.D. students. The curriculum is designed to allow completion of the minor without an increase in overall course load. The minor requires one or two core courses and electives relevant to nanoparticle research. The program of courses is tailored in advance consultation between the student and director of graduate studies.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
Other requirements to be completed before admission:
Admission to a master's or doctoral degree-granting program in the College of Science and Engineering and preparation of a minor program of coursework approved by the director of graduate studies is required. Students in programs outside the College of Science and Engineering must be approved by the director of graduate studies.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

M.S. students must complete NPSE 8001 - Introduction to Nanoparticle Science and Engineering (3 cr) and 3 elective credits. Ph.D. students must complete NPSE 8001 and 8002 - Nanoparticle Science and Engineering Laboratory (3 cr) and 6 elective credits.

Electives must be chosen from existing courses relevant to nanoparticle research. Examples include CHEM 8021 - Computational Chemistry, EE 5624 - Optical Electronics, ME 8361 - Introduction to Plasma Technology, PHYS 5701 - Solid State Physics for Engineers and Scientists, CHEN 8301 - Physical Rate Processes I: Transport, and MATS 8212 - Solid State Reaction Kinetics.

© 2005 by the Regents of the University of Minnesota
The University of Minnesota is an equal opportunity educator and employer.
Information current as of January 21, 2015
Twin Cities Campus
Neuroengineering Minor
Department of Biomedical Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Graduate Minor in Neuroengineering, 7-105 Nils Hasselmo Hall, 312 Church Street S.E., Minneapolis, MN 55455 (612-624-8396; fax 612-626-6583)
Email: igert-ne@umn.edu
Website: http://neuroengineering.umn.edu/

• Program Type: Graduate free-standing minor
• Requirements for this program are current for Fall 2014
• Length of program in credits (Doctorate): 12
• This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The Graduate Minor in Neuroengineering (NE) is motivated by the notion that future breakthroughs in this rapidly-growing area of research will be made by engineers who understand the fundamental issues and principles of neuroscience that occur during neural interventions, and by neuroscientists who are truly competent in engineering concepts and tools. The minor trains doctoral students to develop the skills to revolutionize technologies for interfacing with the brain and to advance our understanding of the neuroscience processes that arise when we interface with and modulate the brain.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
Other requirements to be completed before admission:
Enrollment in the Neuroengineering Minor is open to all currently enrolled Ph.D. students who have the necessary science background to complete the coursework and who are in good standing in their major program.

Special Application Requirements:
Ph.D. students majoring in programs other than Biomedical Engineering, Electrical Engineering, Mechanical Engineering, and Neuroscience must have approval from the Neuroengineering Director of Graduate Studies (DGS) to participate in the minor program. Students will declare the minor by including it on the Graduate Degree Plan, following consultation with the DGS.

Students must officially declare the minor before taking the Oral Preliminary Examination (OPE).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.

The minor course selection must be approved by the Neuroengineering Director of Graduate Studies (DGS) who can be found here: http://neuroengineering.umn.edu/faculty.html.

For any course listed in multiple categories, students must choose which requirement that course will fulfill. A single course cannot be counted simultaneously toward multiple categories.

Students may not use any of their minor courses to satisfy the core course requirements for their major program (i.e., a Neuroscience student cannot count NSCI 5101 as both a Neuroengineering Minor course and a core Neuroscience course).

Introduction Course
Take 1 or more course(s) from the following:
• BMEN 5411 - Neural Engineering (3.0 cr)
• NSCI 5101 - Introduction to Neuroscience for Graduate Students (3.0 cr)
• NSC 5561 - Systems Neuroscience (4.0 cr)

Neuroengineering Core Courses
At least one course from the following must be taken: BMEN 5412, BMEN 5413.

Take 2 or more course(s) from the following:
• BMEN 5411 - Neural Engineering (3.0 cr)
• BMEN 5412 - Neuromodulation (3.0 cr)
• BMEN 5413 - Neural Decoding and Interfacing (3.0 cr)
• BMEN 8335 - Neuroengineering Practicum (3.0 cr)

Elective Course
One additional course from either an engineering or neuroscience discipline. The following is not an exhaustive list but merely a representative sample of courses that would be appropriate to satisfy this requirement. Additional courses may be approved as electives by the Neuroengineering DGS.

Take 1 or more course(s) from the following:
• BMEN 5411 - Neural Engineering (3.0 cr)
• BMEN 5412 - Neuromodulation (3.0 cr)
• BMEN 5413 - Neural Decoding and Interfacing (3.0 cr)
• BMEN 8335 - Neuroengineering Practicum (3.0 cr)
• EE 5231 - Linear Systems and Optimal Control (3.0 cr)
• EE 5239 - Introduction to Nonlinear Optimization (3.0 cr)
• EE 5542 - Adaptive Digital Signal Processing (3.0 cr)
• ME 5281 - Analog and Digital Control (4.0 cr)
• ME 5286 - Robotics (4.0 cr)
• NSC 5202 - Theoretical Neuroscience: Systems and Information Processing (3.0 cr)
• NSC 8217 - Systems and Computational Neuroscience (2.0 cr)
Twin Cities Campus
Physics M.S.
School of Physics & Astronomy
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Director of Graduate Studies in Physics, School of Physics and Astronomy, University of Minnesota, 116 Church St. S.E., Minneapolis, MN 55455 (612-626-5982; fax: 612-624-4578)
Email: grad@physics.umn.edu
Website: http://www.physics.umn.edu/grad

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Note: Students applying for a terminal M.S. degree are not admitted, unless they arrange for their own financial support. Students admitted to the Ph.D. program are automatically eligible for the M.S. program.

Physics is the study of the fundamental structure and interactions of matter. Research areas in the program include experimental and theoretical studies in astrophysics and cosmology, biological physics, condensed matter physics, elementary particle physics, nuclear physics, space and planetary physics, and physics education research. Interdisciplinary study is also available with the programs in astrophysics, biological sciences, chemistry, chemical engineering and materials science, electrical and computer engineering, mechanical engineering, and the history of science and technology.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.50.

Other requirements to be completed before admission:
Upper-division courses in the core areas of classical mechanics, electricity and magnetism, quantum mechanics, and statistical and thermal physics are required. It is advisable to have taken an upper-division course in experimental methods in physics.

Special Application Requirements:
Students admitted to the Ph.D. program are automatically eligible for the M.S. program. Students applying for a terminal M.S. degree are not admitted unless they arrange for their own financial support.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (TOEFL, IELTS, MELAB).
Program Requirements

Plan A: Plan A requires 20 major credits, 0 credits outside the major, and 10 thesis credits. The final exam is oral.

Plan B: Plan B requires 30 major credits and 0 credits outside the major. The final exam is oral. A capstone project is required.

Capstone Project: The Plan B project is a self-contained research problem performed in conjunction with the student's adviser. Students register for 4 credits of Physics 8500: Plan B Project, which count toward the program requirement of 30 credits. The project is described in a written paper. Examples of Plan B projects include carrying out a specific calculation, writing and documenting a computer program, analyzing a set of experimental data, designing and/or constructing experimental instrumentation, and designing and/or constructing an undergraduate laboratory experiment. The alternative to the Plan B project is writing 1-3 Plan B papers. The Plan B papers are related to three courses that the student has taken and do not require original research. It's expected that completion of either the project or the Plan B papers require a nominal three weeks of full-time effort.

Plan C: Plan C requires 30 major credits and 0 credits outside the major. The is no final exam.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

At least 2 semesters must be completed before filing a Degree Program Form.

All courses must be at the 4xxx, 5xxx or 8xxx level. Physics 4001, 4002, 4101, 4201, and 4303 cannot be used to satisfy the requirements.

A minimum GPA of 2.80 is required for Plans A and B and a minimum GPA of 3.30 is required for Plan C for students to remain in good standing.

The M.S. requires a minimum of 30 credits and is offered under three plans. Plan A (thesis) requires 20 course credits and 10 thesis credits. Plan B (project) requires 30 course credits plus completion of a project or 1-3 Plan B papers. For both Plan A and Plan B, Physics 5001/2 or Physics 5011/12 must be included in the degree coursework.

Plan C requires 30 course credits including completion of Physics 5001/2, 5011/12, and 5201. Students in the Plan C program must also pass the Physics Graduate Written Exam and maintain a 3.30 GPA.
Twin Cities Campus
Physics Minor
School of Physics & Astronomy
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Director of Graduate Studies in Physics, School of Physics and Astronomy, University of Minnesota, 116 Church St. S.E., Minneapolis, MN 55455 (612-626-5982; fax: 612-624-4578)
Email: grad@physics.umn.edu
Website: http://www.physics.umn.edu/grad

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Physics is the study of the fundamental structure and interactions of matter. Research areas in the program include experimental and theoretical studies in astrophysics and cosmology, biological physics, condensed matter physics, elementary particle physics, nuclear physics, space and planetary physics, and physics education research. Interdisciplinary study is also available with the programs in astrophysics, biological sciences, chemistry, chemical engineering and materials science, electrical and computer engineering, mechanical engineering, and the history of science and technology.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
Other requirements to be completed before admission:
A physics minor requires a background in differential and integral calculus and one year of calculus-level college physics.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

For the master's minor, students must complete a minimum of 6 credits in physics including either Physics 5001 or 5011.

For the doctoral minor, students must complete a minimum of 12 credits in physics, including either the classical physics sequence (PHYS 5011-5012) or the quantum mechanics sequence (PHYS 5001-5002).

Use of certain 4xxx courses toward degree requirements is permitted under certain conditions with director of graduate studies approval. Physics 4001, 4002, 4101, 4201, and 4303 cannot be used to satisfy the requirements.
Twin Cities Campus
Physics Ph.D.
School of Physics & Astronomy
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Director of Graduate Studies in Physics, School of Physics and Astronomy, University of Minnesota, 116 Church St. S.E., Minneapolis, MN 55455 (612-626-5982; fax: 612-624-4578)
Email: grad@physics.umn.edu
Website: http://www.physics.umn.edu/grad

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 64
- This program requires summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

Physics is the study of the fundamental structure and interactions of matter. Research areas in the program include experimental and theoretical studies in astrophysics and cosmology, biological physics, condensed matter physics, elementary particle physics, nuclear physics, space and planetary physics, and physics education research. Interdisciplinary study is also available with the programs in astrophysics, biological sciences, chemistry, chemical engineering and materials science, electrical and computer engineering, mechanical engineering, and the history of science and technology.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.50.

Other requirements to be completed before admission:
Teaching assistantships and a few fellowships are available upon admittance to the School of Physics and Astronomy.

Applicants are required to submit three letters of recommendation from persons familiar with their scholarship and research potential; a complete set of transcripts; and a clearly written statement of career interests, goals, and objectives. Submission of GRE scores is strongly recommended. Fall semester entry is strongly recommended for all students. Application by December 15 is strongly encouraged to ensure priority consideration for fellowships awarded for the next academic year.

Special Application Requirements:
Courses at the upper division level in the core areas of classical mechanics, electricity and magnetism, quantum mechanics, and statistical and thermal physics are required. It is advisable to have taken an upper division course in experimental methods in physics.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 55
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80
Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
40 credits are required in the major.
0 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.30 is required for students to remain in good standing.

All courses must be at the 4xxx, 5xxx or 8xxx level. Physics 4001, 4002, 4101, 4201, and 4303 cannot be used to satisfy the requirements.

The Ph.D. requires 40 course credits including classical physics (PHYS 5011-5012), quantum mechanics (PHYS 5001-5002), thermal and statistical physics (PHYS 5201) and two semesters of seminar, plus 24 thesis credits.

Required Orientation: During the two weeks before the beginning of fall semester, new graduate students are expected to participate in the department orientation program. This includes TA orientation sessions, which are required if a student's financial support comes from TA assignments.

Requirement for International Students: International students who want to teach as TAs must take CSE TALK, a workshop on American teaching culture and language skills, prior to the department orientation described above and achieve an ELP (English Language Proficiency) rating of 1. This includes passing an English test, which is given in late July and August. Students who do not achieve an ELP of 1 must take an English training course geared to their level of skills, such as GRAD 5105, GRAD 5102, or Foundations. These courses are given during the academic year and are required until the student achieves an ELP of 1.
Twin Cities Campus
Quaternary Paleoecology Minor
Department of Earth Sciences
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Director of Graduate Studies, Quaternary Paleoecology Graduate Program, University of Minnesota, 108 Pillsbury Hall, 310 Pillsbury Drive S.E., Minneapolis, MN 55455 (612-624-7881; fax: 612-625-3819)
Email: qpminor@umn.edu
Website: http://lrc.geo.umn.edu/qpminor/index.html

- Program Type: Graduate free-standing minor
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The faculty of the graduate minor in quaternary paleoecology (QP) hold appointments in several departments. Students in this unique program benefit from the broad range of expertise and experience available at a large research university. From their coursework in the minor, graduate students learn techniques and approaches from other areas that can be applied to their own research.

The minor is available to master's (M.A. and M.S.) and doctoral students.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
Other requirements to be completed before admission:
Students must be enrolled in a graduate program (Master's or Ph.D.) at the University of Minnesota.

Special Application Requirements:
Students apply by sending a letter of application to the director of graduate studies (qpminor@umn.edu) as well as a letter of endorsement from their major adviser. Application may be made at any time.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

Students develop their curricula in consultation with their major advisers and the director of graduate studies in the quaternary paleoecology program. Students choose courses from relevant fields outside their major field. A list of courses that fulfill the QP requirement can be obtained from the program web page (updated periodically). Master's students must take a total of 6 credits. Ph.D. students take a total of 12 credits (one course may be in the major field). Some requirements may be waived depending on the student's background.
Twin Cities Campus
Scientific Computation M.S.
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Scientific Computation Program, University of Minnesota, 151 Amundson Hall, 421 Washington Ave S.E., Minneapolis, MN 55455 (612-625-6345; fax: 612-626-7246)
Email: wentz002@umn.edu
Website: http://www.scicomp.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Science

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The graduate degree program in scientific computation encompasses course work and research on the fundamental principles necessary to use intensive computation to support research in the physical, biological, and social sciences and engineering. There is a special emphasis on research issues, state-of-the-art methods, and the application of these methods to outstanding problems in science, engineering, and other fields that use scientific computation, numerical analysis and algorithm development, symbolic and logic analysis, high-performance computing tools, supercomputing and heterogeneous networks, and visualization.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A bachelor's degree in a field that uses scientific computation is required for admission.

Special Application Requirements:
Three letters of recommendation are required for all applications. GRE General Test scores are required for consideration of financial support and recommended for all applicants. International applicants are required to submit TOEFL scores.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
- Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements

Plan A: Plan A requires 14 major credits, 6 credits outside the major, and 10 thesis credits. The final exam is oral.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 2.8 is required for students to remain in good standing.

The program is offered under Plan A (thesis), which includes a minimum of 20 course credits and 10 thesis credits. The course credits must include at least 6 credits from the scientific computation core and at least 6 credits in a minor. Only 3 credits from courses offered in a student's minor may be counted toward the core requirements in scientific computation. A course listed in both the core requirements of scientific computation and a student's minor may not be counted under both.
Twin Cities Campus

Scientific Computation Minor
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Scientific Computation Program, University of Minnesota, 151 Amundson Hall, 421 Washington Ave S.E., Minneapolis, MN 55455 (612-625-6345; fax: 612-626-7246)
Email: wentz002@umn.edu
Website: http://www.scicomp.umn.edu

- Program Type: Graduate minor related to major
- Requirements for this program are current for Fall 2014
- Length of program in credits (Masters): 6
- Length of program in credits (Doctorate): 12
- This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The graduate degree program in scientific computation encompasses course work and research on the fundamental principles necessary to use intensive computation to support research in the physical, biological, and social sciences and engineering. There is a special emphasis on research issues, state-of-the-art methods, and the application of these methods to outstanding problems in science, engineering, and other fields that use scientific computation, numerical analysis and algorithm development, symbolic and logic analysis, high-performance computing tools, supercomputing and heterogeneous networks, and visualization.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
Special Application Requirements:
The minor requires the approval of the director of graduate studies.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

The master's minor requires a minimum of 6 credits from the core curriculum; the credits may not be from courses in the student's major field.

A doctoral minor requires a minimum of 12 credits (a minimum of 6 of these in core courses with remaining credits from supplementary courses). A student may use one course from their major field to satisfy the requirement of a minor in scientific computation, provided there is no rule prohibiting this in the student's major field.
Twin Cities Campus
Scientific Computation Ph.D.
Chemical Engineering & Materials Science
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Scientific Computation Program, University of Minnesota, 151 Amundson Hall, 421 Washington Ave S.E., Minneapolis, MN 55455 (612-625-6345; fax: 612-626-7246)
Email: wentz002@umn.edu
Website: http://www.scicomp.umn.edu

- Program Type: Doctorate
- Requirements for this program are current for Fall 2014
- Length of program in credits: 48
- This program does not require summer semesters for timely completion.
- Degree: Doctor of Philosophy

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The graduate degree program in scientific computation encompasses course work and research on the fundamental principles necessary to use intensive computation to support research in the physical, biological, and social sciences and engineering. There is a special emphasis on research issues, state-of-the-art methods, and the application of these methods to outstanding problems in science, engineering, and other fields that use scientific computation, numerical analysis and algorithm development, symbolic and logic analysis, high-performance computing tools, supercomputing and heterogeneous networks, and visualization.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
A bachelor's degree in a field that uses scientific computation is required for admission.

Special Application Requirements:
Three letters of recommendation are required for all applications. GRE General Test scores are required for consideration of financial support and recommended for all applicants. International applicants are required to submit TOEFL scores.

Applicants must submit their test score(s) from the following:
- GRE

International applicants must submit score(s) from one of the following tests:
 - TOEFL - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
 - IELTS - Total Score: 6.5
 - MELAB - Final score: 80

Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements
12 credits are required in the major.
12 credits are required outside the major.
24 thesis credits are required.

This program may be completed with a minor.

Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

A minimum of 24 course credits is required with a minimum of 12 credits in core courses; 24 thesis credits are also required. Students have two options:

1. Ph.D. with supporting program - In addition to the core credits, this option requires 12 credits in subjects that support computational science. These can include core credits beyond the required 12 credits.

2. Ph.D. with minor - In addition to the core credits, this option requires 12 credits in a minor. Many minor programs require more than 12 credits; in such cases, the greater requirements will be in effect. The minor field must be declared before the student takes the preliminary oral exam.
Twin Cities Campus
Security Technologies M.S.S.T.
Technological Leadership Institute
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Security Technologies Graduate Program, Technological Leadership Institute, University of Minnesota,
290 McNamara Alumni Center, 200 Oak Street SE, Minneapolis MN 55455 (612-624-5474; fax: 612-624-7510)
Email: tliss@umn.edu
Website: http://www.tli.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 32
- This program requires summer semesters for timely completion.
- Degree: Master of Science in Security Technologies

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The master of science in security technologies (M.S.S.T.) shapes tomorrow’s analytical and risk management policymakers and innovators through a multi-disciplinary graduate program developed in response to growing demand in many levels of industry and government. During the 14-month program and through a multidisciplinary systems approach, the program synthesizes core learning in four areas: security methods and foundations; application expertise (including cyber, bio, food, infrastructure, global supply chains); systems science (interdependency among critical networks, components, human capital, organizational dimensions); and social and policy dimensions. Through elective courses, students also choose a learning track in either security systems technologies or security risk management. Students can further specialize through a range of elective courses. This program bridges disciplines to address local, regional, national, and global areas of need, seeding innovative capabilities while enabling interdisciplinary connections through direct links to industry, business, and government partners.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

A bachelor's degree in a related field, e.g. in biological or physical sciences, engineering, computer science, mathematics, statistics, social sciences, or public policy.

Other requirements to be completed before admission:
Minimum requirements include one year of calculus, probability/statistics, and two science or engineering courses.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.
Program Requirements

Plan B: Plan B requires 25 major credits and 7 credits outside the major. The final exam is written and oral. A capstone project is required.

Capstone Project: The Plan B project is an independent applied investigation on a relevant issue in security technologies or homeland security. Students must register for the capstone course ST 8620 (2 credits).

This program may be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.

A minimum GPA of 3.25 is required for students to remain in good standing.

The M.S.S.T. program requires 32 credits in the fields of systems risk analysis, engineering (hardware and software), emerging technologies, economics, human factors, law, food and bio safety, and public policy to teach and investigate security technologies and address pertinent issues. The 32 credits consist of 25 credits in MSST core courses, including 2 credits for the capstone course, and 7 credits in electives outside the major.

The curriculum comprises a balance of courses from the following core areas:

* Foundations of security science and technology, methods, and algorithms
* Application areas, including critical infrastructures (e.g., communications/IT/cyber, power/energy, water, and transportation; food/infectious diseases, financial networks, supply chain management, etc.)
* Coupled dynamic systems infrastructure interdependencies and dynamics of coupled infrastructures, system-wide risk/threat management, and complex interactive networks (including finance and economics, policy and regulation)
* Regulatory, policy, legal, economic, and business implications
* Management and leadership development (including communication skills, change management, ethics, project management, and conflict management)
Twin Cities Campus
Security Technologies Minor
Technological Leadership Institute
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Security Technologies Graduate Program, Technological Leadership Institute, University of Minnesota,
290 McNamara Alumni Center, 200 Oak Street SE, Minneapolis MN 55455 (612-624-5474; fax: 612-624-7510)
Email: tliss@umn.edu
Website: http://www.tli.umn.edu

• Program Type: Graduate minor related to major
• Requirements for this program are current for Fall 2014
• Length of program in credits (Masters): 7
• Length of program in credits (Doctorate): 12
• This program does not require summer semesters for timely completion.

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The Security Technologies Graduate Program shapes tomorrow's analytical and risk management policymakers and innovators through a multi-disciplinary graduate program developed in response to growing demand in many levels of industry and government. Through a multidisciplinary systems approach, the program synthesizes core learning in four areas: security methods and foundations; application expertise (including cyber, bio, food, infrastructure, global supply chains); systems science (interdependency among critical networks, components, human capital, organizational dimensions); and social and policy dimensions. Through elective courses, students choose a learning track in either security systems technologies or security risk management. Students can further specialize through a range of elective courses. This program bridges disciplines to address local, regional, national, and global areas of need, seeding innovative capabilities while enabling interdisciplinary connections through direct links to industry, business, and government partners.

Program Delivery
This program is available:
• via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

Special Application Requirements:
Applicants for the M.S. minor must be enrolled in a master's degree program at the University of Minnesota and must be interviewed for admission (in person or by telephone) by the DGS or designate, except in rare circumstances where this requirement may be waived.

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses towards program requirements is not permitted.
Twin Cities Campus
Software Engineering M.S.S.E.
Computer Science and Engineering
College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
MSSE Program, Department of Computer Science and Engineering, College of Science and Engineering, 4-192 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612-625-1381; fax: 612-625-0572)
Email: msse@cs.umn.edu
Website: http://www.msse.umn.edu

- Program Type: Master's
- Requirements for this program are current for Fall 2014
- Length of program in credits: 30
- This program does not require summer semesters for timely completion.
- Degree: Master of Science in Software Engineering

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The master of science in software engineering (M.S.S.E.) program provides a thorough understanding of the fundamental issues related to software development and the software development process. It fosters an awareness of the problems and opportunities associated with software-intensive systems and explains the methods for quickly evaluating, adopting, and taking advantage of emerging technologies. This program introduces emerging technologies and their applications and lays the foundation for lifelong learning and professional development in a rapidly changing field. The M.S.S.E. program is an interdisciplinary program administered by the College of Science and Engineering’s Department of Computer Science and Engineering.

The program is offered in a format designed for full-time working professionals. Students take courses one day per week (alternating Fridays and Saturdays) and move through the curriculum as a cohort, taking all classes together for four semesters.

Program Delivery
This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.

Other requirements to be completed before admission:
Prospective students should have an undergraduate degree in computer science or a closely related field and a minimum of one year of professional experience working in the software industry. Students with degrees in other fields may be considered for admission based on extensive industrial experience.

Special Application Requirements:
Because the M.S.S.E. program is designed for full-time working professionals, international applicants must hold an H-1B visa.

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (TOEFL, IELTS, MELAB).
For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements

Plan C: Plan C requires 30 major credits and up to null credits outside the major. There is no final exam.

This program may not be completed with a minor.

Use of 4xxx courses towards program requirements is not permitted.

A minimum GPA of 3.00 is required for students to remain in good standing.

The M.S.S.E. requires 30 credits. Students take eight core courses, two industrial seminar courses and two elective courses. The project requirement can be met by a combination of class projects, or by an independent project elective.
Twin Cities Campus

Stream Restoration Science and Engineering Postbaccalaureate Certificate

CSENG Civil, Envrn & Geo-Eng (CEGE)

College of Science and Engineering

Link to a list of faculty for this program.

Contact Information:
Stream Restoration Graduate Certificate Program, National Center for Earth-surface Dynamics, Saint Anthony Falls Laboratory, 2 Third Avenue S.E., Minneapolis, MN 55414 (612-624-4606; fax: 612-624-0066)
Email: volle001@umn.edu
Website: http://www.nced.umn.edu/srcp

- Program Type: Post-baccalaureate credit certificate/licensure/endorsement
- Requirements for this program are current for Fall 2014
- Length of program in credits: 16
- This program does not require summer semesters for timely completion.
- Degree: Stream Rest. Science & Engineering PBacc Cert

Along with the program-specific requirements listed below, please read the General Information section of the catalog website for requirements that apply to all major fields.

The postbaccalaureate certificate in stream restoration science and engineering is a three-semester program producing graduates who understand how to blend engineering, physical, biological, and social sciences in prioritizing, designing, implementing, and evaluating stream restoration projects. Two courses, including an introduction to stream restoration and a restoration design experience are required. The remaining courses are chosen from a specified list of relevant courses taught across a number of University departments.

Program Delivery

This program is available:
- via classroom (the majority of instruction is face-to-face)

Prerequisites for Admission

The preferred undergraduate GPA for admittance to the program is 3.00.

Applicants must have a bachelor's degree in a related field from an accredited postsecondary U.S. institution or its foreign equivalent.

Other requirements to be completed before admission:
In addition to the University's online application form, students must submit a program application and one letter of reference. The SRSE program application form and directions for submission can be found at http://nced.umn.edu/apply-certificate-program-stream-restoration

International applicants must submit score(s) from one of the following tests:
- TOEFL
 - Internet Based - Total Score: 79
 - Internet Based - Writing Score: 21
 - Internet Based - Reading Score: 19
 - Paper Based - Total Score: 550
- IELTS
 - Total Score: 6.5
- MELAB
 - Final score: 80

Key to test abbreviations (TOEFL, IELTS, MELAB).

For an online application or for more information about graduate education admissions, see the General Information section of the catalog website.

Program Requirements
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.

A minimum GPA of 3.00 is required for students to remain in good standing.

Required core courses:

ESCI/CE/EEB 8601 - Introduction to Stream Restoration (3 cr, offered alternative fall terms) covers key background topics and skills involved in stream restoration.

ESCI/CE/EEB 8602 - Stream Restoration Practice (2 cr, offered alternative fall terms) is a course in which students participate in a stream restoration design experience.

Students obtaining a degree in either earth sciences; civil engineering; or ecology, evolution and behavior should register for these courses under a designator other than their major field. In addition to core courses, students are required to take a minimum of 11 elective credits from four theme areas: river and floodplain science and engineering (3 to 8 cr); river and floodplain ecology (up to 8 cr); water quality (up to 8 cr); water policy and management (up to 4 cr). A full listing of approved electives can be found on the web page http://www.nced.umn.edu/srcp.