Each student in the College of Science and Engineering is given the opportunity to develop competence in a specific field of knowledge.
College of Science and Engineering (CSE)

Dean: James Riehl, 140 Engineering Building, 218-726-6397
Associate Dean: Timothy B. Holst, 140 Engineering Building, 218-726-7585

The College of Science and Engineering has a fourfold mission: help each student develop a foundation for a career by learning the substance and methods of an academic discipline; participate fully in the liberal education mission of the campus; foster significant scholarly research; and serve the well-being of the community, state, and region. The college offers students a broad range of curricula covering the natural sciences, mathematical sciences, engineering, and technology.

Each student is provided the opportunity to develop competence in a special field of knowledge by learning its principles and perspectives, mastering its methods, and acquiring much of its accumulated knowledge.

In addition to offering formal coursework, the college is committed to providing students with opportunities to learn through participation in research, honors programs, individual study, and special seminars. Such programs, which emphasize undergraduate education, are enhanced and complemented by high quality graduate programs. These graduate programs form an integral component of our commitment to scholarship.

Several departments also offer master’s degrees through the Graduate School.

Admission

The college has no specific secondary school preparation requirements for admission beyond the preparation standards of the University of Minnesota. However, secondary school students contemplating a baccalaureate degree in a physical or biological science, mathematics, computer science, or engineering are strongly urged to complete a college preparatory program that includes four years (grades 9-12) each of English, mathematics, and science.

The engineering programs have specific college-level course requirements and minimum GPAs that must be satisfied before students can be admitted into the upper division (junior and senior level) program.

For general admission information, see Policies and Procedures.

College Honors

At UMD, a maximum of 15 percent of the graduating class can graduate with college honors. In CSE, the top 3 percent of the graduating class is designated *summa cum laude*, the next 5 percent *magna cum laude*, and the next 7 percent *cum laude*.

At the beginning of each year, GPAs necessary to achieve these honors are posted in the Student Affairs Office, 140 Engineering Building. The GPAs are based on the previous spring semester graduating class. In addition, students receiving honors must have a coefficient of course completion of at least 90 percent. To be eligible for honors, students must earn at least 30 credits at UMD. For more information, contact the Office of the Associate Dean, 140 Engineering Building.

Honors Programs

The objective of the CSE honors programs is to offer superior ability, highly motivated students a greater challenge than is available through the traditional curriculum. Honors opportunities provide for closer student-faculty relationships, emphasize writing and speaking skills, and offer active learning in the disciplinary and interdisciplinary components.

In the lower division, honors opportunities include seminars and special sections of lecture and lab courses. Students may participate in these by invitation or by consent of the instructor.

Honors opportunities in the upper division are available for students majoring in biology, chemical engineering, chemistry, computer science, geology, mathematics, or physics through the department honors programs. Candidates are selected on the basis of coursework completed and potential for independent work. A research project is required for department honors.

More information about department honors is available through the departments.
Academic Standing

Good Academic Standing
CSE requires that its students maintain a minimum cumulative GPA to be in good academic standing. For students who have attempted 20 or more credits, this minimum cumulative GPA is 2.00. Because some students have difficulty adjusting to the standards of a university education, students who have attempted fewer than 20 credits (at UMD or elsewhere) must maintain a minimum cumulative GPA of 1.80 to remain in good academic standing.

Probation
Students with a cumulative GPA lower than that required for good academic standing are placed on academic probation. If at the end of a semester on academic probation the cumulative GPA is at or above 2.00, the student will be returned to good academic standing.

Dismissal
If, after a semester of probation, a student fails to attain the required minimum cumulative GPA for good academic standing, the student is subject to dismissal. Dismissal decisions are made in the college office following fall and spring semester final exams. Dismissed students are notified immediately and their registration for the next semester of day school canceled. Students failing to attain the minimum GPA, yet making academic progress, may be granted an additional semester of probation at the discretion of the college.

Readmission
Students who have been academically dismissed from CSE must present evidence of improved academic capability to the college to justify readmission. Petition forms for readmission, and information concerning academic standing, are available in the CSE Student Affairs Office, 140 Engineering Building.

Student Affairs Office
Information on academic matters, including academic standing; admission; advising; academic programs; change of major, college, or adviser; grievance and appeals procedures; honors programs; undergraduate research; student clubs; and tutoring is available in the CSE Student Affairs Office, 140 Engineering Building.

Baccalaureate Degrees
CSE offers the bachelor of science (B.S.), bachelor of science in chemical engineering (B.S.Ch.E.), bachelor of science in electrical and computer engineering (B.S.E.C.E.), and bachelor of science in industrial engineering (B.S.I.E.) degrees.

B.S. Majors
Biochemistry/molecular biology
Biology
Cell biology
Chemistry
Computer science
Geological sciences
Information systems and technology
Mathematics
- Applied mathematics
- Computational
- Double major
- Statistics and actuarial science
- Traditional
Physics
- Applied physics

Minors
Aerospace studies
Biology
Chemistry
Computer science
Computer science, applied
Electrical and computer engineering
Environmental engineering
Geological sciences
Information systems and technology
Limnology
Mathematics
- Mathematics, applied
Physics

For other minors available to students receiving a B.S., see School of Business and Economics, School of Fine Arts, College of Education and Human Service Professions, and College of Liberal Arts.

B.S. Requirements
- Completion of at least 120 degree credits.
- Degree candidates must complete at least 30 degree credits at UMD.
- At least 20 of the last 30 degree credits immediately before graduation must have been taken at UMD.
- A 2.00 minimum GPA in all work attempted at UMD; a 2.00 minimum GPA in all work, including transfer credits; and successful completion (excluding failing grades, nonpassing grades, and withdrawals) of 75 percent of all work attempted.
- Completion of UMD liberal education requirements. See Policies and Procedures.
Colleges and Schools

• Completion of a major for the B.S. and a minor or second major in a different program. Required for graduation is a 2.00 minimum GPA in the major, including supporting courses, and a 2.00 minimum GPA in the minor, including supporting courses. If there are multiple majors and/or minors, this requirement holds for each major and minor, calculated separately.

For students completing two or more majors:
• A minor is not required.
• If the majors are for different degrees (e.g., a B.S. and a B.A.), the majors must be in different programs (e.g., a student may not receive a B.S. in chemistry and a B.A. in chemistry) and students must complete requirements for both degrees.
• Compliance with general regulations governing granting of degrees.

B.S.Ch.E. Requirements
• Completion of at least 129 degree credits.
• Degree candidates must complete at least 30 degree credits at UMD.
• At least 20 of the last 30 degree credits immediately before graduation must have been taken at UMD.
• A 2.00 minimum GPA in all work attempted at UMD; a 2.00 minimum GPA in all work, including transfer credits; and successful completion (excluding failing grades, nonpassing grades, and withdrawals) of 75 percent of all work attempted.
• Completion of UMD liberal education requirements. See Policies and Procedures.
• Completion of the chemical engineering major. Admission to the upper division program of the chemical engineering major is competitive and on a space-available basis. Application for admission to upper division must be filed with the department upon completion of lower division requirements.
• A 2.00 minimum GPA in all courses taken in the chemical engineering major, including required courses in related fields. This GPA requirement applies to all courses in the major taken at UMD calculated separately and also to all courses in the major when transfer credits are included.
• Compliance with general regulations governing granting of degrees.

B.S.E.C.E. Requirements
• Completion of at least 131 degree credits.
• Degree candidates must complete at least 30 degree credits at UMD.
• Completion of UMD liberal education requirements. See Policies and Procedures.
• Completion of the electrical and computer engineering major. Admission to the upper division program is competitive and on a space-available basis. A minimum GPA of 2.00 in all work attempted at UMD, successful completion (with grades of A through D, or S) of 75 percent of all work attempted, and a minimum GPA of 2.00 (C) overall (including transfer credits) are required for admission to the electrical and computer engineering (ECE) upper division program.
• Completion of UMD and ECE liberal education requirements.
• A minimum GPA of 2.00 for all courses taken in the major, including required supporting courses is required for graduation. This average applies to all courses in the major taken at UMD and calculated separately and also to all courses in the major when transfer credits are included.
• Compliance with general regulations governing granting of degrees.

B.S.I.E. Requirements
• Completion of at least 127 degree credits.
• Degree candidates must complete at least 30 degree credits at UMD. At least 20 of the last 30 degree credits immediately before graduation must have been taken at UMD.
• A 2.00 minimum GPA (C) in all work attempted at UMD; a 2.00 minimum GPA in all work, including transfer credits; and successful completion (excluding failing grades, nonpassing grades, and withdrawals) of 75 percent of all work attempted.
• Completion of UMD liberal education requirements. See Policies and Procedures. Students must take two courses with different course designators from Category 9.
• Completion of the industrial engineering major. Admission to the upper division program of the industrial engineering major is competitive and on a space-available basis. Application for admission to upper division must be filed with the department upon completion of lower division requirements.
• A 2.00 minimum GPA in all courses taken in the industrial engineering major, including required courses in related fields. This GPA requirement applies to all courses in the major taken at UMD calculated separately and also to all courses in the major when transfer credits are included.
• Compliance with general regulations governing granting of degrees.
Master of Environmental Health and Safety (M.E.H.S.)

Professor: B. J. DeRubeis, Director 218-726-8117; Associate Professor: Hamid F. Fard; Assistant Professor: Dale Kragesmidt

The M.E.H.S. program prepares graduates for professional careers in environmental health and safety such as occupational safety, industrial hygiene, ergonomics, risk management, and environmental health. The coursework includes analysis of occupational safety and health problems, accompanying problem-solving and decision-making techniques, and the application of established principles and practices of accident prevention, control, and reduction in occupational settings.

Admission Requirements
Applicants must have a baccalaureate degree from an accredited college or university, preferably with a major in technology, engineering, science, or another appropriate field. Baccalaureate degree holders with different majors who have relevant backgrounds or qualifications are also considered. A general chemistry course with laboratory, a statistics course, and a first aid course must be completed before admission. If other deficiencies exist, candidates may be accepted into the program contingent upon successful completion of courses designed to correct them. All applicants must take the Graduate Record Examination (GRE) General Test and have an official report of the results sent to the master of environmental health and safety program office as part of their application for admission. Because this test is given at limited times and places during the year, applicants are advised to register early for the examination. Applicants must furnish official transcripts showing that they have completed their baccalaureate degree before they will be admitted or allowed to enroll in any M.E.H.S. courses. Students may apply for admission during their last semester of undergraduate work, but they will not be formally admitted or allowed to begin M.E.H.S. coursework until the baccalaureate degree is completed.

Application Procedure
Admission is restricted to fall semester entry and is limited to thirty students. A completed admission application should be submitted by April 1 of the year of anticipated entrance.

Because enrollment is limited, applicants applying after April 1 may not get into the program. Information and applications are available from the master of environmental health and safety program office, 229 Voss-Kovach Hall. The admission decision is based on an evaluation by the applicant screening committee of the undergraduate scholastic record, past work experience, GRE results, and letters of recommendation. International students must present a TOEFL score of 500 or above. Applicants are responsible for obtaining information on all admission deadlines and requirements and for submitting all required admission materials before the first day of fall semester classes or they will be denied admission and must reapply to the program the following year.

Degree Requirements
Requirements for the M.E.H.S. include: 1) 36 course credits in either the industrial safety or industrial hygiene option and maintenance of an overall minimum GPA of 3.00; 2) a minimum of two semesters for the residence requirement; 3) an additional 3-credit industrial internship with a Plan B type project, which must be fulfilled within six months following completion of coursework, unless a formal extension is requested and granted.

Required Courses
Core (30)
Safe 6001—OSHA and Other Regulatory Standards (3)
Safe 6011—System Safety and Loss Control Techniques (3)
Safe 6012—Risk Management and Workers’ Compensation (2)
Safe 6021—Physical Hazard Control (3)
Safe 6101—Principles of Industrial Hygiene (3)
Safe 6111—Industrial Noise and Ventilation Control (3)
Safe 6301—Occupational Biomechanics and Work Physiology (2)
Safe 6302—Occupational Ergonomics and Injury Management (3)
Safe 6401—Environmental Safety and Legal Implications (2)
Safe 6801—Conference Leading and Team Dynamics (2)
Safe 6811—Behavioral Aspects of Safety (2)
Safe 6821—Organization and Administration of Safety Programs (2)

Industrial Safety Option (9)
Safe 6051—Construction Safety (2)
Safe 6201—Fire Prevention and Emergency Preparedness (2)
Safe 6211—Transportation Safety (2)
Safe 6997—Internship in Industrial Safety (3)
Colleges and Schools

Industrial Hygiene Option (9)
Safe 6102—Advanced Industrial Hygiene and Health Physics (2)
Safe 6121—Epidemiology and Industrial Toxicology (2)
Safe 6402—Environmental Control Operations and Design (2)
Safe 6997—Internship in Industrial Safety (3)

Final Project
Upon completing program coursework on campus, students are required to complete a cooperative internship in an industrial, governmental, or other organization that has an established safety program or is implementing one. Students are required to complete a Plan B type project for the firm.

Grading System
The M.E.H.S. program uses two grading systems, mandatory A-B-C-D-F and S-N. The course syllabus identifies the grading system used for each course. The temporary grade I (incomplete) is assigned only when a student has made an agreement with the instructor to complete the requirements for a course before the time the instructor submits final grades for a semester. The I remains in effect for nine weeks after the beginning of the next semester during which the student is in attendance, unless a different time period has been arranged between the student and instructor. At the end of this period, the I is changed to an N or F unless the instructor has submitted a change of grade or has agreed to an extension of the incomplete. If an extension is permitted, it is the responsibility of the student to get an Extension of Incomplete form, the instructor’s signature, and submit the form to the program office before the deadline.

A student with an excessive number of incompletes may be denied further registration until some of them have been removed.

The program discourages retaking courses to improve grades. Permission from the course instructor and the major adviser is required to retake courses. If a course is retaken, all registrations for it remain on the student’s record.

Some professional requirements can be fulfilled in two or three years; others take four years with the completion of a baccalaureate degree. In any case, students are encouraged to avoid narrow specialization during their undergraduate years.

The basic programs are described below. Variations in a curriculum may be arranged upon agreement among the student, preprofessional adviser, and office of admissions of the pertinent professional school. Students are encouraged to see their advisers regularly to obtain current curriculum information, learn of visits by representatives of various professional schools, and receive help with course planning. UMD also offers preparatory courses for other health sciences professions.

Pre-Dentistry
Adviser: Holmstrand (Biol)

The University’s School of Dentistry requires at least three years of college, including:
Biol 1011*—General Biology I (5)
Biol 1012—General Biology II (5)
Chem 1151*—General Chemistry I (5)
Chem 1152—General Chemistry II (5)
Chem 2521—Organic Chemistry I (4)
Chem 2522—Organic Chemistry II (4-5)
Chem 3322—Biochemistry (3)
Comp 1120*—College Writing (3)
Comp 3xxx—Advanced Writing (3)
Math 1250*—Precalculus Analysis (4)
Phys 1001*—Introduction to Physics I (5)
Phys 1002—Introduction to Physics II (5)
Psy 1003*—General Psychology (4)

Electives especially recommended are art, cell biology, human anatomy, microbiology, and physiology. Additional electives can be selected from courses in business, biology, chemistry, social sciences, and the humanities.

It is also strongly recommended that students complete additional credits to achieve as broad and liberal an education as possible. About 80 percent of successful dental school candidates have a baccalaureate degree. Applicants to dental school must apply before December 1 for entry the following fall. The American Dental Association Admissions Test (DAT) must be taken before the student’s application will be considered. The computerized DAT can be taken at any time, but students must first apply through the Dental Admission Testing Program.

* Courses that may be used to fulfill UMD liberal education program requirements.
Pre-Medicine

Advisers: Carlson, Firling, Hedman, Hicks, Karim, Poe, Siders, Thompson, Tsai (Chem)

Students admitted to medical school must complete four-year degrees before they begin medical studies. There is no prescribed pre-medical major—any recognized college major is acceptable. Admission requirements vary, however, and students should plan their academic programs with the assistance of a pre-medicine adviser. Students also should check the admission requirements of the medical schools in which they are interested. The following courses are prerequisites for admission to many medical schools.

- Biol 1011*—General Biology I (5)
- Biol 1012—General Biology II (5)
- Chem 1151*—General Chemistry I (5)
- Chem 1152—General Chemistry II (5)
- Chem 2521—Organic Chemistry I (4)
- Chem 2522—Organic Chemistry II (4-5)
- Comp 1120*—College Writing (3)
- Comp 3150—Advanced Writing: Science (3)
- Math 1296*—Calculus I (5)
- Phys 1001*—Introduction to Physics I (5)
- Phys 1002—Introduction to Physics II (5)
- or Phys 1201*—Mechanics (4)
- and Phys 1204—Electricity, Magnetism, and Optics (5)

Additional recommended or required courses may include cell biology, genetics, humanities, literature, microbiology, quantitative analysis, and social sciences.

* Courses that may be used to fulfill UMD liberal education program requirements.

The Medical College Admission Test (MCAT) should be taken in the spring of the junior year or, at the latest, in the summer before the senior year. Students are advised to apply to medical school as early as possible after June 15 of the year preceding anticipated fall entrance. Most application deadlines are between October 1 and November 15.

Current information about admission requirements for all American medical schools can be found in Medical School Admission Requirements. Complete information on admission requirements for the three Minnesota medical schools is in the Handbook on Pre-Medical Studies, available from any pre-medicine adviser or the college’s Student Affairs Office, 140 Engineering Building.

Pre-Optometry

Adviser: Firling (Biol)

Admission requirements for optometry colleges vary considerably. The following program satisfies pre-optometry requirements for most of these colleges. It is suggested that students begin application procedures during their third year of college study. Applicants are selected on a competitive basis and academic work is weighed heavily. Taking courses pass-fail is discouraged. In addition to GPA, admission is based on Optometry College Admission Test (OCAT) scores, letters of recommendation, volunteer or work experience in optometry, interview evaluations, and other supporting documents.

- Biol 1011*—General Biology I (5)
- Biol 1012—General Biology II (5)
- Biol 2101—Cell Biology (3)
- Chem 1151*—General Chemistry I (5)
- Chem 1152—General Chemistry II (5)
- Chem 2521—Organic Chemistry I (4)
- Chem 2522—Organic Chemistry II (4-5)
- Comp 1120*—College Writing (3)
- Comp 3xxx—Advanced Writing (3)
- Math 1296*—Calculus I (5)
- Phys 1001*—Introduction to Physics I (5)
- Phys 1002—Introduction to Physics II (5)
- Psy 1003*—General Psychology (4)
- Stat 1411*—Introduction to Statistics (3)

Additional recommended or required courses may include anatomy, biochemistry, communications, computer science, genetics, humanities, microbiology, physiology, and social sciences.

* Courses that may be used to fulfill UMD liberal education program requirements.

Pre-Pharmacy

Advisers: Caple, Harriss (Chem)

Students wishing to enter the four-year doctor of pharmacy (Pharm.D.) program in the College of Pharmacy on the Minneapolis campus may complete their pre-pharmacy work on the Duluth campus. Students who have successfully completed the prerequisites below are considered for admission to the program.

- Biol 1011*—General Biology I (5)
- Biol 1012—General Biology II (5)
- Biol 2101—Cell Biology (3)
- Biol 1761—Human Anatomy (4)
- Biol 4501—General Microbiology (4)
- Chem 1151*—General Chemistry I (5)
- Chem 1152—General Chemistry II (5)
- Chem 2521—Organic Chemistry I (4)
Chem 2522—Organic Chemistry II (5)
Comm 1112*—Public Speaking (3)
Comp 1120*—College Writing (3)
Comp 3150—Advanced Writing: Science (3)
Econ 1023*—Principles of Economics: Microeconomics (3)
Math 1296*—Calculus I (5)
Phys 1001*—Introduction to Physics I (5)
Phys 1002—Introduction to Physics II (5)
Two courses dealing with human behavior in society (e.g., psychology, sociology, anthropology)
* Courses that may be used to fulfill UMD liberal education program requirements.

Pre-Veterinary Medicine
Adviser: Karim (Biol)

The pre-veterinary program at UMD is part of the preparation for entry into the College of Veterinary Medicine on the St. Paul campus. Students may apply for entry after their third year at UMD. Required courses must be completed A-F.

Students should apply for admission to the veterinary college no later than November 1 for entry the following fall (about one year before desired entry). The Graduate Record Examination (GRE) is also required for admission. Write to the Office of the Registrar—St. Paul, University of Minnesota, 130 Coffey Hall, 1420 Eckles Avenue, St. Paul, MN 55108.

A recommended pre-veterinary program appears below for those who wish to enter veterinary college after their third year.

Biol 1011*—General Biology I (5)
Biol 1012—General Biology II (5)
Biol 2101—Cell Biology (3)
Biol 2201—Genetics (3)
Biol 4501—General Microbiology (4)
Chem 1151*—General Chemistry I (5)
Chem 1152—General Chemistry II (5)
Chem 2521—Organic Chemistry I (4)
Chem 2522—Organic Chemistry II (4-5)
Chem 3322—Biochemistry (3)
Comp 1120*—College Writing (3)
Comp 3xxx—Advanced Writing (3)
Math 1250*—Precalculus Analysis (4)
Phys 1001*—Introduction to Physics I (5)
Phys 1002—Introduction to Physics II (5)

Arts and humanities electives
History and social sciences electives

Additional recommended electives include courses in business management, communications, economics, public speaking, and statistics.

* Courses that may be used to fulfill UMD liberal education program requirements.

Note: Students who choose to complete a degree at UMD before transferring to a veterinary college may do so within the usual four-year enrollment if they carefully select electives to fulfill pre-veterinary requirements and the requirements of their major departments. Additional biology, chemistry, or mathematics coursework, for example, can lead to majors in these areas.

Pre-Engineering
Advisers: See individual engineering departments or contact CSE Student Affairs, 218-726-7585, for referral.

Students who are undecided on the specific engineering program they would like to pursue may ask to be declared pre-engineering students. They should select a specific engineering program during their freshman year from either the Accreditation Board for Engineering and Technology (ABET)-accredited chemical engineering, electrical and computer engineering, or industrial engineering programs at UMD, or one of the preparatory engineering programs, such as pre-aerospace engineering, pre-civil engineering, or pre-mechanical engineering. Students selecting one of the preparatory programs may transfer to the Institute of Technology (IT) on the Minneapolis campus or other baccalaureate degree-granting institutions at the end of their sophomore year to complete their studies in those engineering fields.

Students are encouraged to make a selection as early as possible because only mathematics, physics, and college writing courses are common in the first year. There are other required courses, such as chemistry, computer programming, economics, and engineering graphics that differ between engineering programs even in the first year. After selecting a specified field, students are assigned advisers with the appropriate background who can advise them to take the proper courses. Students should choose a field of engineering before the beginning of their sophomore year.

Recommended Courses for First Two Years for Students Who Wish to Transfer to IT or Another University

The course recommendations below have been designed to closely match the lower division programs (i.e., the first two years) at the University’s Institute of Technology (IT). Students who wish to transfer to another engineering school can, with the aid of their
engineering adviser, plan a program fulfilling the basic requirements of the first two years. Programs in engineering specialties at other schools normally do not differ markedly from those listed below; they usually concentrate on mathematics and the basic sciences.

Pre-Aerospace Engineering
Chem 1151*—General Chemistry I (5)
Comp 1120*—College Writing (3)
CS 1131*—Introduction to Programming in FORTRAN (3) or
CS 1511*—Computer Science I (5)
Engr 2015—Statics (3)
Engr 2016—Mechanics of Materials (3)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3298—Calculus III (4)
Math 3280—Differential Equations With Linear Algebra (4)
Phys 1201*—Mechanics (4)
Phys 1202—Heat and Electricity (4)
Phys 2021—Relativity and Quantum Physics (4)
Liberal education courses that complete Minnesota Transfer Curriculum or meet requirements of transfer institution

* Courses that may be used to fulfill UMD liberal education program requirements.

Pre-Civil Engineering
Chem 1151*—General Chemistry I (5)
Chem 1152—General Chemistry II (5)
Comp 1120*—College Writing (3)
Engr 2015—Statics (3)
Engr 2016—Mechanics of Materials (3)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3298—Calculus III (4)
Math 3280—Differential Equations With Linear Algebra (4)
Phys 1201*—Mechanics (4)
Phys 1202—Heat and Electricity (4)
Stat 3611—Introduction to Probability and Statistics (4)
Liberal education courses that complete Minnesota Transfer Curriculum or meet requirements of transfer institution

Pre-Mechanical Engineering
Chem 1151*—General Chemistry I (5)
Comp 1120*—College Writing (3)
CS 1511*—Computer Science I (5)
Engr 2015—Statics (3)
Engr 2016—Mechanics of Materials (3)
Engr 2026—Dynamics (3)
IE 1225—Introduction to Design and Manufacturing Engineering (4)
IE 2105—Introduction to Material Science (3)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3298—Calculus III (4)
Math 3280—Differential Equations With Linear Algebra (4)
Phys 1201*—Mechanics (4)
Phys 1202—Heat and Electricity (4)
Liberal education courses that complete Minnesota Transfer Curriculum or meet requirements of transfer institution

Other Engineering Specialties
Consult CSE Student Affairs Office, 140 Engineering Building.

Junior-Level Admission
UMD and transfer students must apply for admission at the end of their sophomore year to the upper division of the engineering program in which they are interested. A minimum cumulative GPA, determined by the department, is required in the lower division courses of the chosen engineering program. Students from other colleges wishing to transfer into UMD engineering programs should have completed the equivalent lower division courses with the required cumulative GPA. The completed application is evaluated on the basis of GPA, curriculum completed, and space availability. Students transferring from the Minnesota state community college system should refer to the list of equivalent lower division courses for their college. This list is available from CSE or the community college engineering adviser. Courses in which a D has been earned at an institution other than the University cannot be used to meet the specified course requirements of the engineering degrees except when the D is earned in a sequence course and a C or better is earned in the following course.

Pre-Fisheries and Wildlife Management
Adviser: Contact the Department of Biology

This curriculum provides two years of study that fulfill many of the basic requirements for professional study in fisheries and wildlife management. UMD courses below are required for the fisheries and wildlife management degree and have equivalents in the Department of Fisheries and Wildlife, College of Natural Resources on the St. Paul campus. Students planning to attend the summer program at the Lake Itasca Forestry and Biological Station following their freshman or sophomore year must have a 2.00 minimum GPA, completed 40 credits, and completed Biol 1011-1012 with minimum grades of C. For more information,
consult the College of Natural Resources section of the Twin Cities Undergraduate Catalog.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 1011*</td>
<td>General Biology I (5)</td>
<td></td>
</tr>
<tr>
<td>Biol 1012</td>
<td>General Biology II (5)</td>
<td></td>
</tr>
<tr>
<td>Biol 2201</td>
<td>Genetics (3)</td>
<td></td>
</tr>
<tr>
<td>Biol 2801</td>
<td>General Ecology (3)</td>
<td></td>
</tr>
<tr>
<td>Chem 1151*</td>
<td>General Chemistry I (5)</td>
<td></td>
</tr>
<tr>
<td>Chem 1152</td>
<td>General Chemistry II (5)</td>
<td></td>
</tr>
<tr>
<td>Comm 1112*</td>
<td>Public Speaking (3)</td>
<td></td>
</tr>
<tr>
<td>Comp 1120*</td>
<td>College Writing (3)</td>
<td></td>
</tr>
<tr>
<td>Math 1296*</td>
<td>Calculus I (5)</td>
<td></td>
</tr>
<tr>
<td>Math 1297</td>
<td>Calculus II (5)</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>Math 1160*—Finite Mathematics and Introduction to Calculus (5)</td>
<td></td>
</tr>
<tr>
<td>Phys 1001*</td>
<td>Introduction to Physics I (5)</td>
<td></td>
</tr>
<tr>
<td>Phys 1002</td>
<td>Introduction to Physics II (5)</td>
<td></td>
</tr>
<tr>
<td>Stat 2411</td>
<td>Statistical Methods (3)</td>
<td></td>
</tr>
</tbody>
</table>

Liberal education courses that complete the Minnesota Transfer Curriculum or meet requirement of transfer institution.

* Courses that may be used to fulfill UMD liberal education program requirements.

Degree Programs

Aerospace Studies (Air)

Professor: Lt. Col. Carol Wolosz (department head); **Assistant Professors:** Capt. Aimee Alvstad, Capt. John Hedenberg

Any student may enroll in aerospace studies courses; however, they should be taken sequentially. Active-duty Air Force officers provide a curriculum that gives students insight into the mission, organization, and operation of the U.S. Air Force. Students study Air Force history, leadership, management, professionalism, and U.S. foreign policy and its relationship to defense policy. Applying organizational leadership and management skills is the backbone of this professional development program. AFROTC prepares college students for Air Force leadership positions as they earn their academic degrees. Scholarships are available on a competitive basis. High school seniors and college students can compete for two-, three-, and four-year scholarships that cover tuition, fees, book expenses, and a monthly stipend. Non-AFROTC-scholarship participants may qualify to receive a monthly stipend and tuition incentive.

Requirements

Lower Division (9)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air 1101</td>
<td>Foundations of the U.S. Air Force (1)</td>
</tr>
<tr>
<td>Air 1102</td>
<td>Foundations of the U.S. Air Force (1)</td>
</tr>
<tr>
<td>Air 2101</td>
<td>The Evolution of the U.S. Air Force and Space Power (1)</td>
</tr>
<tr>
<td>Air 2102</td>
<td>The Evolution of the U.S. Air Force Air and Space Power (1)</td>
</tr>
</tbody>
</table>

Course requiring mathematical reasoning (2)

Comm 1112*—Public Speaking

or Comm 1222*—Interpersonal Communication (3)

Upper Division (18-19)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air 3101</td>
<td>Air Force Leadership Studies (3)</td>
</tr>
<tr>
<td>Air 3102</td>
<td>Air Force Leadership Studies (3)</td>
</tr>
<tr>
<td>Air 4101</td>
<td>National Security Affairs/Preparation for Active Duty (3)</td>
</tr>
<tr>
<td>Air 4102</td>
<td>National Security Affairs/Preparation for Active Duty (3)</td>
</tr>
</tbody>
</table>

Advanced or technical writing course (3)

One of the following or an approved substitute:

Air 2200—Introduction to Aviation (3)

Air 3400—Project Management (3)

Hist 3384—American Foreign Relations I (3)

Pol 3400—Contemporary Issues in World Politics (4)

Pol 3402—American Foreign and Defense Policy (3)

Pol 3426—Politics of International Organization and Law (4)

* Courses that may be used to fulfill UMD liberal education program requirements.
Astronomy (Ast)

See Course Descriptions.

Biochemistry and Molecular Biology

Department of Chemistry

B.S.

Biochemistry and molecular biology is the study of life at the molecular level. This field is both a life science and a chemical science, exploring the chemistry of living organisms and the molecular basis for the processes that occur in living cells. The Department of Chemistry provides classroom and laboratory learning opportunities and research experience across the discipline to meet the needs of students in liberal arts and preprofessional programs as well as of students who wish to pursue careers in the field.

Honors Requirements

The chemistry department honors program helps outstanding biochemistry and molecular biology majors develop into competent, independent research workers, encourages student interest in the discipline, and aids students in their transition to scientists. Qualified majors may apply after the first semester of their sophomore year. Participants choose a research adviser and complete three semesters of effort on a jointly developed project. Written reports and an oral presentation of the research are also required.

Degree Requirements

Requirements for the B.S. degree in biochemistry and molecular biology (120 credits) include:

- Liberal education requirements
- Advanced writing requirement—noted under the major requirements for “Year 3” (3 credits)
- Major requirements (82 credits)

Required Courses

Year 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 1011*</td>
<td>5</td>
</tr>
<tr>
<td>Biol 1012</td>
<td>5</td>
</tr>
<tr>
<td>Chem 1151*</td>
<td>5</td>
</tr>
<tr>
<td>or Chem 1161*</td>
<td>5</td>
</tr>
<tr>
<td>Chem 1152</td>
<td>5</td>
</tr>
<tr>
<td>or Chem 1162</td>
<td>5</td>
</tr>
<tr>
<td>Math 1296*</td>
<td>5</td>
</tr>
<tr>
<td>Math 1297</td>
<td>5</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 2101</td>
<td>3</td>
</tr>
<tr>
<td>Chem 2222</td>
<td>3</td>
</tr>
<tr>
<td>Chem 2223</td>
<td>1</td>
</tr>
<tr>
<td>Chem 2521</td>
<td>4</td>
</tr>
<tr>
<td>Chem 2522</td>
<td>4</td>
</tr>
<tr>
<td>Phys 1201*</td>
<td>4</td>
</tr>
<tr>
<td>Phys 1204</td>
<td>5</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 2201</td>
<td>3</td>
</tr>
<tr>
<td>Chem 4341</td>
<td>4</td>
</tr>
<tr>
<td>Chem 4363</td>
<td>2</td>
</tr>
<tr>
<td>Chem 4632</td>
<td>4</td>
</tr>
<tr>
<td>Chem 4633</td>
<td>1</td>
</tr>
<tr>
<td>Comp 31xx</td>
<td>3</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 3184</td>
<td>1</td>
</tr>
<tr>
<td>Chem 4242</td>
<td>2</td>
</tr>
<tr>
<td>Chem 4342</td>
<td>4</td>
</tr>
<tr>
<td>Chem 4364</td>
<td>2</td>
</tr>
<tr>
<td>Chem 4434</td>
<td>4</td>
</tr>
</tbody>
</table>

* Courses that may be used to fulfill UMD liberal education program requirements.

Students who earn a B.S. degree in biochemistry and molecular biology (BMB) will have met the requirements for the B.A. in chemistry and for the chemistry minor. However, neither the BMB major/B.A. chemistry major combination nor the BMB major/chemistry minor combination satisfies the college degree requirement for a second major or minor. The B.S. BMB major/B.S. chemistry major combination does satisfy the college degree requirement.
Biology (Biol)

The Department of Biology provides instruction and research experience for undergraduate and graduate students as part of a liberal education, preparation for graduate school, or a sound basis for professional training in the biological and health sciences.

B.A.—CLA

The B.A. degree is for students completing a liberal arts degree in biology.

Degree Requirements

Requirements for the B.A. in biology (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3150—Advanced Writing: Science (3)
- Major requirements (59-70 credits): 24 core biology credits, which include coursework in general biology, genetics, cell biology, ecology, evolution, and seminar; 17-28 credits of supporting courses in mathematics, statistics, and chemistry; 18 credits of biology electives at the 2xxx level or above to provide flexibility in pursuing personal interests or career preparation
- Minor requirements

Required Courses

Biol 1011* — General Biology I (5)
Biol 1012 — General Biology II (5)
Biol 2101 — Cell Biology (3)
Biol 2201 — Genetics (3)
Biol 2801 — General Ecology (3)
Biol 2802 — Ecology Laboratory (2)
Biol 3997 — Seminar I (0.5)
Biol 3998 — Seminar II (0.5)
Biol 4801 — Evolution (2)
Biol electives at 2xxx or above (18)

Required Courses From Other Programs

Chem 1113* — Introduction to General, Organic, and Biological Chemistry I (5)

and

Chem 1114 — Introduction to General, Organic, and Biological Chemistry II (5)

or

Chem 1151* — General Chemistry I (5)

and

Chem 1152 — General Chemistry II (5)

and

Chem 2521 — Organic Chemistry I (4)

and

Chem 2522 — Organic Chemistry II (4-5)

or

Chem 1161* — Honors Course: General Chemistry I (5)

and

Chem 1162 — Honors Course: General Chemistry II (5)

and

Chem 2521 — Organic Chemistry I (4)

and

Chem 2522 — Organic Chemistry II (4-5)

Math 1250* — Precalculus Analysis (4)

and

Stat 1411* — Introduction to Statistics (3)

or

Math 1290* — Calculus for the Natural Sciences (5)

and

Stat 2411* — Statistical Methods (3)

or

Math 3611 — Introduction to Probability and Statistics (4)

or

Math 1296* — Calculus I (5)

and

Stat 2411* — Statistical Methods (3)

or

Stat 3611 — Introduction to Probability and Statistics (4)

Electives (18)

Biol 2xxx or higher must include a minimum of two laboratory courses or courses with a laboratory component

Two of the following may be used:

MicB 5545 — Immunobiology (3)
Phsl 3011 — General Physiology (4)
Phsl 5601 — Physiology of Organ Systems I (4)
Phsl 5602 — Physiology of Organ Systems II (2)

* Courses that may be used to fulfill UMD liberal education program requirements.

B.S.

Degree Requirements

Requirements for the B.S. in biology (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3150—Advanced Writing: Science (3)
- Major requirements (77-81 credits): 24 core biology credits, which include general biology, cell biology, genetics, ecology, evolution, and seminar; supporting coursework in mathematics, chemistry, and physics; 18 credits of biology electives at the 2xxx level or higher

Required Courses

Biol 1011* — General Biology I (5)
Biol 1012 — General Biology II (5)
Biol 2101 — Cell Biology (3)
Biol 2201 — Genetics (3)
Biol 2801 — General Ecology (3)
Biol 2802 — Ecology Laboratory (2)
Biol 3997 — Seminar I (0.5)
Biol 3998 — Seminar II (0.5)
Biol 4801 — Evolution (2)
Biol electives at 2xxx or above (18)

Required Courses From Other Programs

Chem 1113* — Introduction to General, Organic, and Biological Chemistry I (5)

and

Chem 1114 — Introduction to General, Organic, and Biological Chemistry II (5)

or

Chem 1151* — General Chemistry I (5)

and

Chem 1152 — General Chemistry II (5)

and

Chem 2521 — Organic Chemistry I (4)

and

Chem 2522 — Organic Chemistry II (4-5)

or

Chem 1161* — Honors Course: General Chemistry I (5)

and

Chem 1162 — Honors Course: General Chemistry II (5)

and

Chem 2521 — Organic Chemistry I (4)

and

Chem 2522 — Organic Chemistry II (4-5)

Math 1250* — Precalculus Analysis (4)

and

Stat 1411* — Introduction to Statistics (3)

or

Math 1290* — Calculus for the Natural Sciences (5)

and

Stat 2411* — Statistical Methods (3)

or

Math 3611 — Introduction to Probability and Statistics (4)

or

Math 1296* — Calculus I (5)

and

Stat 2411* — Statistical Methods (3)

or

Stat 3611 — Introduction to Probability and Statistics (4)
Required Courses From Other Programs
Chem 1151*—General Chemistry I (5)
and Chem 1152—General Chemistry II (5)

or
Chem 1161*—Honors Course: General Chemistry I (5)
and Chem 1162—Honors Course: General Chemistry II (5)

Chem 2521—Organic Chemistry I (4)
Chem 2522—Organic Chemistry II (4-5)

Math 1296*—Calculus I (5)
and Math 1297—Calculus II (5)

or
Math 1296*—Calculus I (5)
and Stat 2411*—Statistical Methods (3)

or
Math 1296*—Calculus I (5)
and Stat 2411*—Statistical Methods (3)

Phys 1001*—Introduction to Physics I (5)
and Phys 1002—Introduction to Physics II (5)

or
Phys 1201*—Mechanics (4)
and Phys 1204—Electricity, Magnetism, and Optics (5)

* Courses that may be used to fulfill UMD liberal education program requirements.

Electives (18)
Biol 2xxx or higher must include a minimum of two laboratory courses or courses with a laboratory component

Two of the following may be used:
MicB 5545—Immunobiology (3)
Phsl 3011—General Physiology (4)
Phsl 5601—Physiology of Organ Systems I (4)
Phsl 5602—Physiology of Organ Systems II (2)

Minor Requirements (44-55)
Biol 1011*—General Biology I (5)
Biol 1012—General Biology II (5)
Biol 2101—Cell Biology (3)
Biol 2201—Genetics (3)
Biol 2801—General Ecology (3)
Biol 4801—Evolution (2)

Biol electives at 2xxx or above (6) (may include two of the following: MicB 5545, Phsl 3011, Phsl 5601, Phsl 5602)

Chem 1113*—Introduction to General, Organic, and Biological Chemistry I (5)
and Chem 1114—Introduction to General, Organic, and Biological Chemistry II (5)

or
Chem 1151*—General Chemistry I (5)
and Chem 1152—General Chemistry II (5)
and Chem 2521—Organic Chemistry I (4)
and Chem 2522—Organic Chemistry II (4-5)

or
Chem 1161*—Honors Course: General Chemistry I (5)
and Chem 1162—Honors Course: General Chemistry II (5)

and Chem 2521—Organic Chemistry I (4)
and Chem 2522—Organic Chemistry II (4-5)
Math 1250*—Precalculus Analysis (4)
and Stat 1411*—Introduction to Statistics (3)

or
Math 1290*—Calculus for the Natural Sciences (5)
and Stat 2411*—Statistical Methods (3)
or
Stat 3611—Introduction to Probability and Statistics (4)

or
Math 1296*—Calculus I (5)
and Stat 2411*—Statistical Methods (3)
or
Stat 3611—Introduction to Probability and Statistics (4)

and Math 1297—Calculus II (5)

Cell Biology

Department of Biology

B.S.

Cell biology is one of the most rapidly growing areas of modern biology. The cell biology major prepares students for graduate school and careers in cell biology, genetics, developmental biology, physiology, immunology, and biotechnology. The major is also appropriate for students considering entry into professional schools of medicine, dentistry, pharmacy, and veterinary medicine. The program is administered by the Department of Biology and involves faculty in both the College of Science and Engineering and the UMD School of Medicine.

Degree Requirements

The B.S. in cell biology allows students to satisfy requirements for a chemistry minor by completing the courses listed in the major.

Degree requirements include (120 credits):

- Liberal education requirements
- Advanced writing requirement: Comp 3150—Advanced Writing: Science (3)
- Major requirements (84-91 credits)

Required Courses

Biol 1011*—General Biology I (5)
Biol 1012—General Biology II (5)
Biol 2101—Cell Biology (3)
Biol 2201—Genetics (3)
Biol 4501—General Microbiology (4)
Colleges and Schools

Biol 4801—Evolution (2)
Biol 5231—Molecular Biology (3)
Biol 5232—Molecular Biology Laboratory (2)
Biol 5331—Plant Development (2)
 and **Biol 5332**—Plant Development Laboratory (2)
 or
 Biol 5361—Developmental Biology (4)
Biol 5601—Plant Physiology (2)
 and **Biol 5602**—Plant Physiology Laboratory (2)
 or
 Phsl 5601—Physiology of Organ Systems I (4)
 and **Phsl 5602**—Physiology of Organ Systems II (2)

Minimum of 6 credits—select at least one course with laboratory or a laboratory course not selected above:

Biol 2801—General Ecology (3)
Biol 3990—Topics in Biology (program approved) (1-5)
Biol 3994—Undergraduate Research (1-3)
Biol 5121—Plant Biochemistry and Molecular Biology (4)
Biol 5133—Mechanisms of Cell Communication (4)
Biol 5199—Frontiers in Cell Biology (1)
Biol 5331—Plant Development (2)
Biol 5332—Plant Development Laboratory (2)
Biol 5361—Developmental Biology (4)
Biol 5511—Virology (3)
Biol 5513—Experimental Immunology (4)
Biol 5601—Plant Physiology (2)
Biol 5602—Plant Physiology Laboratory (2)
Biol 5765—Histology (4)
Biol 5801—Microbial Ecology (2)
Biol 5802—Microbial Ecology Laboratory (2)
Biol 5990—Topics in Biology (program approved) (1-5)
MicB 5545—Immunobiology (3)
Phsl 5601—Physiology of Organ Systems I (3)
Phsl 5602—Physiology of Organ Systems II (2)

Required Courses From Other Programs

Chem 1151*—General Chemistry I (5)
 and Chem 1152—General Chemistry II (5)
 or
 Chem 1161*—Honors Course: General Chemistry I (5)
 and Chem 1162—Honors Course: General Chemistry II (5)
Chem 2222—Quantitative Analysis (3)
Chem 2223—Quantitative Analysis Lab (1)
Chem 2521—Organic Chemistry I (4)
 and Chem 2522—Organic Chemistry II (4-5)
Chem 3322—Biochemistry (3)
 and Chem 3324—Biochemistry Laboratory (1)
 or
 Chem 4341—Biochemistry and Molecular Biology I (4)
 and Chem 4363—Biochemistry Laboratory (2)
Math 1296*—Calculus I (5)
 and Math 1297—Calculus II (5)
 or
 Math 1296*—Calculus I (5)
 and Stat 2411*—Statistical Methods (3)
 or
 Stat 3611—Introduction to Probability and Statistics (4)
 or
 Math 1290*—Calculus for the Natural Sciences (5)
 and Stat 2411*—Statistical Methods (3)
 or
 Stat 3611—Introduction to Probability and Statistics (4)
Phys 1001*—Introduction to Physics I (5)
 and Phys 1002—Introduction to Physics II (5)
 or
 Phys 1201*—Mechanics (4)
 and Phys 1204—Electricity, Magnetism, and Optics (5)

* Courses that may be used to fulfill UMD liberal education program requirements.

Chemical Engineering (ChE)

Chemical Engineering (ChE)

Associate Professors: Richard A. Davis (department head), Keith Lodge; Assistant Professors: Gerardine Botte, Steven Sternberg

B.S.Ch.E.

This four-year baccalaureate (B.S.Ch.E.) degree program emphasizes the development of the student’s ability to analyze and design chemical processing systems. By the end of the program, the student must demonstrate the ability to solve engineering problems, a sensitivity to the social and environmental impacts of the engineering profession, and the ability to maintain a high level of competency.

Chemical engineering graduates are qualified for employment in diverse industries, ranging from those that manufacture inorganic chemicals, petrochemicals, plastics, synthetic fibers, paper and pulp, and pharmaceuticals to those that process hazardous and nuclear wastes. Graduates are qualified for assignments that include plant operations, process development, process control, project engineering, or sales, and frequently pursue engineering management later in their careers. They are also well qualified to continue with professional or graduate education.

The chemical engineering curriculum is based on fundamental sciences such as physics, chemistry, and mathematics; engineering sciences such as statics and deformable body mechanics of materials; traditional chemical engineering sciences such as material and energy balance, transport phenomena, and thermodynamics; and chemical engineering design courses, with a capstone plant design course during the senior year. Students have a unique opportunity to become involved in research, through either the Undergraduate Research Opportunities Program or the department honors program.
Admission Requirements
Students may declare a chemical engineering major as freshmen or sophomores. Students must complete the lower division level before applying to the upper division level (junior and senior years) of the program. Admission is competitive and applicants are admitted on a space-available basis, determined by the cumulative GPA in composition, physics, mathematics, engineering statics, and chemistry through Chem 2521. Transfer students and students who have been granted joint admission in engineering with the Minnesota State Community College System should refer to the Pre-Engineering section. Students must complete the upper division courses to complete the degree.

Honors Requirements
To graduate with department honors, students must have a minimum 3.50 GPA and be nominated by the chemical engineering faculty.

Degree Requirements
Requirements for the B.S.Ch.E. in chemical engineering (129 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 31xx—Advanced Writing or Comp 5220—Document Design or Comp 5230—Web Pages, Application, and Presentation (3)
- Completion of the lower division level before applying to the upper division level (junior and senior years) of the program

Required Courses

Lower Division (9)
ChE 1011*—Introduction to Chemical Engineering (3)
ChE 2111—Material and Energy Balances (3)
ChE 2121—Chemical Engineering Thermodynamics (3)

Upper Division (35)
ChE 3111—Fluid Mechanics (3)
ChE 3112—Heat and Mass Transfer (3)
ChE 3211—Chemical Engineering Laboratory I (3)
ChE 3231—Properties of Engineering Materials (3)
ChE 4111—Separations (3)
ChE 4211—Chemical Engineering Laboratory II (3)
ChE 4301—Chemical Reaction Engineering (3)
ChE 4401—Process Control (3)
ChE 4501—Chemical Engineering Design I (4)
ChE 4502—Chemical Engineering Design II (4)
ChE 4xxx or higher elective (3)

Required Courses From Other Programs

Lower Division (53)
Chem 1151*—General Chemistry I
or Chem 1161*—Honors General Chemistry I (5)
Chem 1152—General Chemistry II
or Chem 1162—Honors General Chemistry II (5)
Chem 2222—Quantitative Analysis (3)
Chem 2223—Quantitative Lab (1)
Chem 2521—Organic Chemistry I (4)
Comp 1120*—College Writing (3)
CS 11xx—or higher (Introduction to Programming) (2)
Engr 2015—Statics (3)
Engr 2016—Mechanics of Materials (3)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Phys 1201*—Mechanics (4)
Phys 1202—Heat and Electricity (4)
Liberal education electives (6)

Upper Division (32)
Chem 25xx (or higher) Advanced chemistry electives (8)
Comp 31xx (or higher) Advanced writing
or Comp 5220—Document Design and Graphics
or Comp 5230—Web Pages, Applications and Presentations (3)
Engr 3201—Electrical Power (3)
Math 3280—Differential Equations with Linear Algebra (4)
Stat 3611—Introduction to Probability and Statistics (4)
Advanced science or engineering elective: 3xxx or higher courses in the College of Science and Engineering (3)
Liberal education electives: 1 each Category 6-10, except where an option is provided for Category 10, another course from Category 9 may be taken. (7)
* Courses that may be used to fulfill UMD liberal education program requirements.

Chemistry (Chem)

Chemistry is a body of knowledge that helps explain the physical world and its processes. Chemists study substances: their composition, structures, properties, and reactions. The Department of Chemistry provides classroom and laboratory learning opportunities and research experience across the discipline to meet the needs of students in liberal arts and preprofessional programs as well as of students who wish to pursue careers in the field.
Honors Requirements
The chemistry department honors program helps outstanding chemistry majors develop into competent, independent research workers, encourages student interest in the discipline, and aids students in their transition to scientists. Qualified majors may apply after the first semester of their sophomore year. Participants choose a research adviser and complete three semesters of effort on a jointly developed project. Written reports and an oral presentation of the research are also required.

B.A.—CLA
Degree Requirements
Requirements for the B.A. degree in chemistry (120 credits) include:
- Liberal education requirements
- Advanced writing requirement—listed under the major requirements for “Year 3” (3 credits)
- Major requirements (54 credits)
- Minor requirements

Required Courses

Year 1
Chem 1151*—General Chemistry I
or Chem 1161*—Honors Course: General Chemistry I (5)
Chem 1152—General Chemistry II
or Chem 1162—Honors Course: General Chemistry II (5)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)

Year 2
Chem 2222—Quantitative Analysis (3)
Chem 2223—Quantitative Analysis Laboratory (1)
Chem 2521—Organic Chemistry I (4)
Chem 2522—Organic Chemistry II (5)
Phys 1201*—Mechanics (4)
Phys 1204—Electricity, Magnetism, and Optics (5)

Year 3
Chem 3322—Biochemistry (3)
Chem 3324—Biochemistry Laboratory (1)
Chem 4632—Physical Chemistry (4)
Chem 4633—Physical Chemistry Laboratory (1)
Comp 31xx—Advanced writing (3 credits)

Year 4
Chem 4434—Inorganic Chemistry (4)
* Courses that may be used to fulfill UMD liberal education program requirements.

B.S.
Students earning a B.S. degree who wish to have their program certified by the American Chemical Society must take advanced courses that include additional hours of laboratory work.

Degree Requirements
Requirements for the B.S. degree (120 credits) in chemistry include:
- Liberal education requirements
- Advanced writing requirement—noted under the major requirements for “Year 3” (3 credits)
- Major requirements (71 credits)

Required Courses

Year 1
Chem 1151*—General Chemistry I
or Chem 1161*—Honors Course: General Chemistry I (5)
Chem 1152—General Chemistry II
or Chem 1162—Honors Course: General Chemistry II (5)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)

Year 2
Chem 2222—Quantitative Analysis (3)
Chem 2223—Quantitative Analysis Laboratory (1)
Chem 2521—Organic Chemistry I (4)
Chem 2522—Organic Chemistry II (5)
CS 1135*—Introduction to Programming in FORTRAN 77 (2)
Math 3280—Differential Equations with Linear Algebra (4)
Phys 1201*—Mechanics (4)
Phys 1204—Electricity, Magnetism, and Optics (5)

Year 3
Chem 3322—Biochemistry (3)
Chem 3324—Biochemistry Laboratory (1)
Chem 4641—Physical Chemistry I (3)
Chem 4643—Physical Chemistry Laboratory I (1)
Chem 4642—Physical Chemistry II (3)
Chem 4644—Physical Chemistry Laboratory II (1)
Comp 31xx—Advanced writing (3 credits)

Year 4
Chem 3184—Undergraduate Seminar (1) must be taken fall and spring semester for a total of 2 credits
Chem 4242—Instrumental Analysis (2)
Chem 4243—Instrumental Chemistry Laboratory (2)
Chem 4434—Inorganic Chemistry (4)
Chem 4435—Inorganic Chemistry Laboratory (1)
* Courses that may be used to fulfill UMD liberal education program requirements.
Minor Requirements (26)
Chem 1151*—General Chemistry I
or
Chem 1161*—Honors Course: General Chemistry I (5)
Chem 1152—General Chemistry II
or
Chem 1162—Honors Course: General Chemistry II (5)
Chem 2222—Quantitative Analysis (3)
Chem 2223—Quantitative Analysis Laboratory (1)
Chem 2521—Organic Chemistry I (4)
Chem 2522—Organic Chemistry II (4)
College-level math course (4)
*Courses that may be used to fulfill UMD liberal education program requirements.

Degree Requirements
Requirements for the B.S. in computer science (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3130—Advanced Writing: Engineering or Comp 3150—Advanced Writing: Science (3)
- The computer science segment of the program contains a broad-based core of fundamental material required of all students (18 credits). In addition, 24 credits of advanced computer science courses, with at least 12 of these chosen from courses that provide depth in the discipline, are included in the major requirements.
- Mathematics and science are particularly important for the study of computer science. The curriculum includes 18 credits of mathematics/statistics courses and 12-14 credits of science courses, including a 2-semester science sequence.
- To broaden students’ backgrounds, the major includes courses chosen from communication, composition, the humanities, the social sciences, and the arts.
- An ethics course and a fundamental course in digital system design chosen from electrical and computer engineering, and CS 4993—Seminar.
- A minor or a second major in another department is required.

Required Courses
Core
CS 1511*—Computer Science I
or
CS 1581*—Honors: Computer Science I (5)
CS 1521—Computer Science II (5)
CS 2511—Software Development (4)
CS 2521—Computer Organization (4)
Advanced Courses—six courses, including at least three breadth courses (24)
1. Breadth
CS 4511—Automata, Computability, and Formal Languages (4)
CS 4521—Advanced Data Structures and Algorithms (4)
CS 4531—Software Engineering (4)
CS 4611—Database Management Systems (4)
CS 5541—Artificial Intelligence (4)
CS 5551—User Interface Design (4)
CS 5621—Computer Architecture (4)
CS 5631—Operating Systems (4)
CS 5641—Compiler Design (4)
CS 5651—Computer Networks (4)

Computer Science (CS)

Professor: Donald B. Crouch (department head); Associate Professors: Timothy R. Colburn, Carolyn J. Crouch, Linda L. Deneen, Douglas J. Dunham, Richard Maclin, Gary M. Shute; Assistant Professors: Theodore Pedersen, Christopher Prince, Maria Sosonkina, C. Hudson Turner

B.S.

Computer science is a discipline that involves understanding the design of computers and computational processes, and ranges from the theoretical study of algorithms to the design and implementation of software at the systems and applications levels.

The B.S. degree in computer science is a four-year accredited program that provides a solid base of fundamental knowledge in the following areas: algorithms, data structures, software design and analysis, programming languages, computer organization and architecture, and theoretical computer science. In addition, students are expected to develop outstanding programming skills. The program provides the necessary foundational studies for students seeking careers in the computing industry or preparing for graduate study in computer science. This program is accredited by the Computer Science Accreditation Commission of the Computing Sciences Accreditation Board.

Admission Requirements
Same as admission criteria for the College of Science and Engineering.

Honors Requirements
Program candidates submit an application to the department honors committee. Participants must maintain a 3.00 cumulative GPA and a 3.30 GPA in the major and complete an honors research project supervised by a faculty member; credit for the project can be earned in CS 4994—Honors Project.
2. Electives
CS 4811—Systems Software (4)
CS 4821—Computer Security (4)
CS 5721—Computer Graphics (4)
CS 5741—Object-Oriented Design (4)
CS 5751—Machine Learning (4)
CS 5761—Introduction to Natural Language Processing (4)
CS 5831—Information and Text Processing (4)

Required Courses From Other Programs
Comm 1112*—Public Speaking (3)
Comp 1120*—College Writing (3)
ECE 1315—Digital System Design (4)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3355—Discrete Mathematics (4)
Phil 3242—Values and Technology (3)
or
CS 3111—Computer Ethics (4)
Stat 3611—Introduction to Probability and Statistics (4)
One of the following science sequences:
Biol 1011*—General Biology I (5)
and Biol 1012—General Biology II (5)
or
Chem 1151*—General Chemistry I (5)
and Chem 1152—General Chemistry II (5)
or
Chem 1161*—Honors Course: General Chemistry I (5)
and Chem 1162—Honors Course: General Chemistry II (5)
or
Geol 1110*—Introductory Geology (4)
and Geol 2311—Mineralogy and Petrology I (4)
and Geol 2312—Mineralogy and Petrology II (4)
or
Phys 1201*—Mechanics (4)
and Phys 1202—Heat and Electricity (4)
or
Phys 1204—Electricity, Magnetism, and Optics (5)
Additional approved courses from physics, chemistry, biology, astronomy, and geology (4)**
Electives in the humanities, social sciences, and arts (18)
* Courses that may be used to fulfill UMD liberal education program requirements.
** Complete an additional science course that either is in Category 4 of the liberal education program or has a Category 4 course as a prerequisite. The total number of credits for this additional course and the science sequence must be at least 12 credits.

Minor Requirements
The computer science minor requires 31 credits:
CS 1511*—Computer Science I
or
CS 1581*—Honors: Computer Science (5)
CS 1521—Computer Science II (5)
CS 2511—Software Development (4)
Electives from CS 2521, CS courses at 45xx or above, ECE 3341, 4305 (12)
Math 1296*—Calculus I—(5)
* Courses that may be used to fulfill UMD liberal education program requirements.

Computer Science—Applied

Minor Only
The applied computer science minor (27 credits) provides a thorough introduction to the use of computers as tools and complements studies in other disciplines.

Requirements (27)
CS 1511*—Computer Science I (5)
or
CS 1581*—Honors: Computer Science (5)
CS 1521—Computer Science II (5)
CS 2511—Software Development (4)
Electives in CS courses at 2xxx or above (7)
Approved electives from computer science or other departments with a significant computing component (6).
A complete list of eligible courses is available from the department.
* Courses that may be used to fulfill UMD liberal education program requirements.
Note: The computer science and computer science applied minors are not available to information systems and technology majors.

Electrical and Computer Engineering (ECE)

Professors: Stanley Burns (department head), Nazmi Shehadeh, Jiann-Shiou Yang, Jack Rowe Professor: Marian Stachowicz; Associate Professors: Christopher Carroll, Taek Mu Kwon; Assistant Professors: Rocio Alba-Flores, Mohammed Hasan, Fernando Rios-Gutierez, Bassam Shaer

B.S.E.C.E.
The Department of Electrical and Computer Engineering provides a high quality educational opportunity in electrical and computer engineering for students in the region. Students prepare for a successful career in industry, academia, or government by learning the substance and methods of the electrical and computer engineering discipline including technical, critical thinking, and communication skills. The department provides the opportunity for students to participate fully in the liberal education mission of the University; fosters significant scholarly research for faculty and students; serves the well-being of the community, state, and region through the multifaceted efforts of our faculty and graduates; and provides the opportunity for students to develop a foundation for lifelong learning.

The electrical and computer engineering B.S.E.C.E. program combines traditional electrical engineering topics with current computer design and analysis topics. The
program is concerned with the theory, design, and application of electrical phenomena and digital computers, including electronic circuits, signal analysis, system design, and computer architecture. The department displays strengths in such diverse areas as electronics, signal processing, electromagnetics, digital computer systems, communications, and controls. Individual faculty members specialize in areas such as VLSI design, microprocessor systems, image processing, robust control, solid state devices, robotics, instrumentation, neural networks, and fuzzy logic. The program balances theoretical and practical experience in electrical and computer engineering through analysis, synthesis, and experimentation, using facilities that include nine major instructional laboratories and three research laboratories.

Admission Requirements
Freshman-level Admission—Students who enter the electrical and computer engineering program as freshmen must follow the lower division program listed under Required Courses below.

Junior-level Admission—Students should complete the lower division ECE program before applying to the upper division (junior and senior years) program. Admission is competitive and on a space-available basis. A minimum GPA of 2.00 is required for admission to the upper division program. See department for further details.

Honors Requirements
To receive department honors upon graduating, students must finish the program with an overall GPA of at least 3.50, satisfactorily complete a research project under the guidance of a faculty member, and convey the results in an oral and written presentation to the department.

Advising
ECE majors are required to meet with their adviser each semester to discuss their academic plans for the upcoming semester and to obtain a registration hold release. Students are encouraged to meet as often as needed to discuss curriculum choices, professional interests, and any other topics that will be of assistance as they pursue their electrical and computer engineering education.

Note: Completion of the ECE program as outlined below satisfies the requirements for a computer science minor.

Degree Requirements
Requirements for the B.S.E.E. in electrical and computer engineering (131 credits) include:

- Liberal education requirements (35 credits; 37 credits for ECE majors)
- Advanced writing requirement: Comp 3130—Advanced Writing: Engineering (3)
- 6 technical elective credits to achieve breadth and depth in the major
- Enough required math, science, engineering science, engineering design, and composition credits to meet or exceed accreditation requirements

Required Courses
Lower Division (22)
- ECE 1001—Introduction to Electrical and Computer Engineering (2)
- ECE 1315—Digital System Design (4)
- ECE 2006—Electrical Circuit Analysis (4)
- ECE 2111—Linear Systems and Signal Analysis (4)
- ECE 2212—Electronics I (4)
- ECE 2325—Microcomputer System Design (4)

Upper Division (31)
- ECE 3151—Control Systems (3)
- ECE 3235—Electronics II (4)
- ECE 3341—Digital Computer Circuits (4)
- ECE 3445—Electromagnetic Fields (3)
- ECE 3611—Introduction to Solid State Semiconductors (3)
- ECE 4305—Computer Architecture (4)
- ECE technical electives (6)
- ECE 4899—Senior Project I (1)
 and ECE 4999—Senior Project II (3)
 or ECE 4951—Design Workshop (4)

Required Courses From Other Programs
Lower Division (46)
- Chem 2172—General Chemistry (4)
- Comp 1120—College Writing (3)
- CS 1511—Computer Science I (5)
- CS 1521—Computer Science II (5)
- CS 2511—Software Development (4)
- Econ 1023—Principles of Economics: Micro (3)
- IE 2105—Introduction to Material Science for Engineers (3)
- Math 1296—Calculus I (5)
- Math 1297—Calculus II (5)
- Phys 1204—Electricity, Magnetism, and Optics (5)

IE 2105 may be replaced with either of the following pairs of courses:
- Engr 2015—Statics (3)
 and Engr 2026—Dynamics (3)
- or Engr 2015—Statics (3)
 and ChE 3111—Fluid Mechanics (3)
Colleges and Schools

Upper Division (19)
Comp 3130—Advanced Writing Engineering (3)
CS 5631—Operating Systems (4)
Math 3280—Differential Equations with Linear Algebra (4)
Math 3298—Calculus III (4)
Stat 3611—Introduction to Probability and Statistics (4)
Liberal education electives (13)
Liberal education elective choices (plus Econ 1023) must include the following:
- At least one course from Category 7
- At least one course from Category 8
- At least two courses from Category 9 with different designators
- At least one course emphasizing international perspective
- At least one course emphasizing cultural diversity
- A total of at least 16 credits in Categories 6 through 9
- At least one course numbered 2xxx or higher and one 1xxx course with the same designator, both from Categories 6 through 9 (or any course that specifies as a prerequisite any course in categories 6 through 9)

* Courses that may be used to fulfill UMD liberal education program requirements.

Final Project
Electrical and computer engineering students must complete a capstone design project integrating the knowledge from their academic career. This project, completed individually or in a small group, must involve the design of hardware or software to meet specifications agreed upon by the student and the faculty project adviser. Oral and written reports are required.

Minor Requirements (43)

Lower Division (39)
ECE 1315—Digital System Design (4)
ECE 2006—Electrical Circuit Analysis (4)
ECE 2111—Linear Systems and Signal Analysis (4)
ECE 2212—Electronics I (4)
ECE 2325—Microcomputer System Design (4)**
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Phys 1201*—Mechanics (4)
Phys 1204—Electricity, Magnetism, and Optics (5)

Upper Division (4)
Math 3280—Differential Equations and Linear Algebra (4)

* Courses that may be used to fulfill UMD liberal education program requirements.

** For computer science majors: CS 2521—Computer Organization (4) may be substituted for ECE 2325—Microcomputer System Design (4)

Engineering

College of Science and Engineering
See Chemical Engineering, Electrical and Computer Engineering, Environmental Engineering, Industrial Engineering, or Pre-Engineering Program.

Environmental Engineering

Department of Chemical Engineering

Minor Only
The environmental engineering minor develops a student’s ability to understand and address environmental concerns. Coursework provides broad-based science and engineering knowledge suited to pollution prevention and waste management. The minor enhances degrees in science or other engineering fields.

Requirements (49)

Lower Division (43)
ChE 1011*—Introduction to Chemical Engineering
or ChE 2001*—Introduction to Environmental Engineering (3)
Stat 3611—Introduction to Probability and Statistics (4)
or Stat 2411*—Statistical Methods (3)
ChE 2111—Material and Energy Balances (3)
Chem 1151*—General Chemistry I (5)
and Chem 1152—General Chemistry II (5)
or Chem 1161*—Honors Course: General Chemistry I (5)
and Chem 1162—Honors Course: General Chemistry II (5)
Chem 2222—Quantitative Analysis (3)
Chem 2223—Quantitative Analysis Lab (1)
Engr 2015—Statics (3)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Phys 1201*—Mechanics (4)

Upper Division

Electives (6)
ChE 4601—Biochemical Engineering (3)
ChE 4611—Advanced Wastewater Treatment (3)
ChE 4612—Hazardous Waste Processing Engineering (3)
ChE 4613—Air Pollution Control (3)
Geol 4211—Applied Hydrogeology (3)
Lim 5001—Physical and Chemical Limnology (3)

* Courses that may be used to fulfill UMD liberal education program requirements.
 geological sciences (geol)

professors: james a. grant, timothy b. holst, thomas c. johnson, ronald l. morton, richard w. ojakangas, george r. rapp; associate professors: erik t. brown, howard d. mooers, penelope morton (department head), Nigel j. wattrus; assistant professors: christina d. gallup, john b. swenson

The department of geological sciences offers three undergraduate programs: a B.S. program providing training for a career as a professional geologist, which usually requires graduate study; a B.A. liberal arts program; and a program for those interested in teaching earth sciences (see earth sciences). Minors in geological sciences and limnology are also available.

admission requirements
students must have a minimum GPA of 2.00.

B.A.—CLA

degree requirements
requirements for the B.A. in geological sciences (120 credits) include:

- LiberaL education requirements
- Completion of an advanced writing requirement: Comp 3150—Advanced Writing: Science (3)
- Major requirements (51-53 credits)

required courses

Geology Core (26-30)

Geol 1110*—Introductory Geology (4)
Geol 2110—Earth History, with lab (4)
Geol 2120—Earth’s Dynamic Interior (3)
Geol 2311—Mineralogy and Petrology I (4)
Geol 2312—Mineralogy and Petrology II (4)
Geol 3520—Structural Geology (4)
Geol 3540—Geologic Field Methods (1)
Geol 4500—Field Geology (6)

Advanced Electives (8-12)

Geol electives, 3xxx and above

With the exception of Geol 4110—Advanced Earth Science for Teachers, electives (3xxx and above) are selected from our yearly geological sciences offerings, Lim 5001 and 5002. Geog 4563 and 4564 (5 credit total) may be substituted for 3 credits of geological sciences electives.

required courses from other programs

Chem 1113*—Introduction to General, Organic, and Biological Chemistry I (5)
Chem 1114—Introduction to General, Organic, and Biological Chemistry II (5)
Chem 1151*—General Chemistry I (5)
Chem 1152—General Chemistry II (5)
Chem 1161*—Honors Course: General Chemistry I (5)
Chem 1162—Honors Course: General Chemistry II (5)
Math 1250*—Precalculus Analysis (4)
or Math 1290—Calculus for the Natural Sciences (5)
or Math 1296*—Calculus I (5)
or Stat 2411*—Statistical Methods (3)

* Courses that may be used to fulfill UMD liberal education program requirements.

B.S.

Degree requirements
requirements for the B.S. in geological sciences (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3150—Advanced Writing: Science (3)
- Major requirements (71-73 credits)

required courses

Geology Core (30)

Geol 1110*—Introductory Geology (4)
Geol 2110—Earth History, with lab (4)
Geol 2120—Earth’s Dynamic Interior (3)
Geol 2311—Mineralogy and Petrology I (4)
Geol 2312—Mineralogy and Petrology II (4)
Geol 3520—Structural Geology (4)
Geol 3540—Geologic Field Methods (1)
Geol 4500—Field Geology (6)

Advanced Electives (15)

Geol electives, 3xxx and above

With the exception of Geol 4110—Advanced Earth Science for Teachers, electives (3xxx and above) are selected from our yearly geological sciences offerings, Lim 5001 and 5002. Geog 4563 and 4564 (5 credit total) may be substituted for 3 credits of geological sciences electives.

required courses from other programs

Chem 1151*—General Chemistry I
Chem 1152—General Chemistry II
Chem 1161—Honors Course: General Chemistry I
Chem 1162—Honors Course: General Chemistry II (10)
Math 1290*—Calculus for the Natural Sciences (5)
or Math 1296*—Calculus I (5)
or Stat 2411*—Statistical Methods (3)
or Math 1296*—Calculus I (5)
or Math 1297—Calculus II (5)
Phys 1201*—Mechanics (4)
or and Phys 1202—Heat and Electricity (4)

* Courses that may be used to fulfill UMD liberal education program requirements.

Minor requirements (21)

The geological sciences minor enhances the student’s understanding of and familiarity with earth materials and processes, and provides valuable background for many environmental careers and applications.
Colleges and Schools

Industrial Engineering (IE)

Professors: Bernard J. DeRubeis, Mark A. Fugelso, L. Alden Kendall, Richard R. Lindeke; Associate Professors: Hamid Fard, Ryan G. Rosandich, David A. Wyrick (department head); Assistant Professors: Dale A. Krageschmidt, John C. Voss, Martha C. Wilson

B.S.I.E.
The industrial engineering B.S.I.E. program integrates topics from manufacturing, management, and traditional design. Industrial engineers are proficient in the design, improvement, and management of complex systems of people, materials, equipment, and energy. They study and adapt product designs and the associated plant facilities to optimize production. In the process, they consider economic, technical, and human factors. The curriculum rounds out the learning experience by providing skills in the mathematical and physical sciences, economics, composition, and humanities and social sciences.

The industrial engineering program is accredited by the Accreditation Board for Engineering and Technology (ABET). The program emphasizes manufacturing engineering and engineering management.

Students have an opportunity to learn about engineering in the global community. This option requires a senior year exchange with the Department of Materials and Manufacturing Engineering at Luleå University of Technology in Sweden.

Admission Requirements
Admission to the program is competitive and on a space-available basis. A minimum overall GPA of 2.00 is required on all program courses taken at the time an application to the program is submitted. An application may be submitted when the student has completed the following courses:

Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3280—Differential Equations with Linear Algebra (4)
Phys 1201*—Mechanics (4)
Phys 1202—Heat and Electricity (4)
Engr 2015—Statics (3)
IE 1225—Introduction to Design and Manufacturing Engineering (4)

The department will use a summary of the grades on the above courses as another criteria for accepting students into the B.S. program.

* Courses that may be used to fulfill UMD liberal education program requirements.

Degree Requirements
Requirements for the B.S.I.E. in industrial engineering (127 credits) include:

- Liberal education program requirements. Students must take two courses with different designators from Category 9, and no courses from Category 10, as part of this requirement.
- Completion of at least 30 degree credits at UMD
- At least 20 of the last 30 degree credits taken immediately before graduation must have been taken at UMD
- A minimum GPA of 2.00 (C) overall (including transfer credits) and in all major work attempted at UMD, and successful completion (with grades of A-D, or P) of all required courses and of 75 percent of all work attempted
- Completion of the composition requirement
- Completion of the major program. A minimum GPA of 2.00 in all courses taken in the major, including required courses in related fields, is required for graduation.
- Completion of 65 credits in upper division courses (at 3xxx or above)
- Filing of an upper division application and Academic Progress Audit (APAS). Students who fail to file this form by the time they have completed 75 credits may not be permitted to register.

Automated Systems Program

B.S.I.E.

Required Courses
IE 1225—Introduction to Engineering Design (4)
IE 2105—Introduction to Material Science for Engineers (3)
IE 3105—Human Factors (4)
IE 3115—Operations Research (4)
IE 3125—Engineering Economic Analysis (3)
IE 3135—Materials Processing (4)
IE 3205—Project Management (3)
IE 3255—Statistical Quality Control (3)
IE 3265—Production and Operations Management (4)
IE 4115—Facility Planning and Simulation (4)
IE 4135—Automation and Robotics (3)
IE 4235—Manufacturing Systems Integration (4)
IE 4255—Senior Design (3)
Required Courses From Other Programs

Chem 1151*—General Chemistry I (5)

or

Chem 2172—General Chemistry (4)

Comp 1120*—College Writing (3)

Comp 3130—Advanced Writing: Engineering**

or

Comp 3150—Advanced Writing: Science (3)**

CS 1511*—Computer Science I (5)

CS 1121—Visual BASIC (3)

or

CS 1521—Computer Science II (5)

or

CS 2121—JAVA (3)

or

FMIS 3201—Management Information Systems (3)

Econ 1022*—Principles of Economics: Macro

or

Econ 1023*—Principles of Economics: Micro (3)

Math 1296*—Calculus I (5)

Math 1297—Calculus II (5)

Math 3280—Differential Equations with Linear Algebra (4)

Phys 1201*—Mechanics (4)

Phys 1202—Heat and Electricity (4)

Stat 3611—Introduction to Probability and Statistics (4)

One course each from liberal education categories 7 and 8; two courses from category 9 (12)

* Courses that may be used to fulfill UMD liberal education program requirements.

** Fulfills the advanced composition requirement.

Automated systems electives choose from the list of courses below (9):

IE 3245—Machining and Machine Tools (4)

IE 4145—CAD/CAM (4)

IE 4175—Machine Design (3)

IE 4196—Cooperative Education (2)

IE 4495—Special Topics (1-4)

ChE 2201—Introduction to Environmental Engineering (3)

ChE 2111—Material and Energy Balances (3)

ChE 3111—Fluid Mechanics (3)

ChE 5895—Special Topics (1-4)

CS 1511—Computer Science II (5) (cannot apply twice)

CS 2121—JAVA (3)—cannot apply twice

ECE 2006—Electrical Circuit Analysis (4)

ECE 2111—Linear Systems and Signal Analysis (4)

ECE 2325—Microcomputer Systems Design (4)

ECE 3151—Control Systems (4)

ECE 4995—Special Topics (1-3)

FMIS 3201—Management Information Systems (3) (cannot apply twice)

FMIS 3222—Systems Analysis and Design (3)

FMIS 3226—Expert Systems (3)

Mgts 4472—Entrepreneurship (3)

Math 3298—Calculus III (4)

Math 3355—Discrete Math (4)

Math 5260—Dynamical Systems (3)

Math 5270—Modeling with Dynamical Systems (3)

Safe 6001—OSHA and Other Regulatory Standards (3)

Stat 5411—Analysis of Designed Experiments (3)

Stat 5511—Regression Analysis (3)

Design for Manufacturing

B.S.I.E.

Required Courses

IE 1225—Introduction to Engineering Design (4)

IE 2105—Introduction to Material Science for Engineers (3)

IE 3105—Human Factors (4)

IE 3115—Operations Research (4)

IE 3125—Engineering Economic Analysis (3)

IE 3135—Materials Processing (4)

IE 3205—Project Management (3)

IE 3245—Machining and Machine Tools (4)

IE 3255—Statistical Quality Control (3)

IE 3265—Production and Operations Management (4)

IE 4115—Facility Planning and Simulation (4)

IE 4145—CAD/CAM (4)

IE 4175—Machine Design

IE 4255—Senior Design (3)

Required Courses From Other Programs

Chem 1151*—General Chemistry I (5)

or

Chem 2172—General Chemistry (4)

Comp 1120*—College Writing (3)

Comp 3130—Advanced Writing: Engineering**

or

Comp 3150—Advanced Writing: Science (3)**

CS 1511*—Computer Science I (5)

Engr 2015—Statics (3)

Engr 2016—Mechanics of Materials (3)

Engr 2026—Dynamics (3)

ECE 2006—Electrical Circuit Analysis (4)

Math 1296*—Calculus I (5)

Math 1297—Calculus II (5)

Math 3280—Differential Equations with Linear Algebra (4)

Phys 1201*—Mechanics (4)

Phys 1202—Heat and Electricity (4)

Stat 3611—Introduction to Probability and Statistics (4)

One course each from liberal education categories 7 and 8; two courses from category 9 (12)

* Courses that may be used to fulfill UMD liberal education program requirements.

** Fulfills the advanced composition requirement.

Design for manufacturing electives choose from the list of courses below (9):

IE 4135—Automation and Robotics (3)

IE 4196—Cooperative Education (2)

IE 4235—Manufacturing Systems Integration (4)

IE 4495—Special Topics (1-4)

ChE 2201—Introduction to Environmental Engineering (3)

ChE 2111—Material and Energy Balances (3)

ChE 3111—Chemical Engineering Thermodynamics (3)

ChE 3112—Heat and Mass Transfer (3)

Safe 6001—OSHA and Other Regulatory Standards (3)

Stat 5411—Analysis of Designed Experiments (3)

Stat 5511—Regression Analysis (3)
ECE 2111—Linear Systems and Signal Analysis (4)
ECE 2212—Electronics I (4)
ECE 3151—Control Systems (4)
ECE 3235—Electronics II (4)
ECE 4501—Power Systems (4)
ECE 4995—Special Topics (1-3)
FMIS 3201—Management Information Systems (3) (cannot apply twice)
MgtS 4472—Entrepreneurship (3)
Math 3298—Calculus III (4)
Phys 2001—Oscillations (2)
Safe 6021—Physical Hazard Control (3)
Stat 5411—Analysis of Designed Experiments (3)
Stat 5511—Regression Analysis (3)
Stat 5531—Probability Models (4)

International Engineering Program

B.S.I.E.

Required Courses
IE 1225—Introduction to Engineering Design (4)
IE 2105—Introduction to Material Science for Engineers (3)
IE 3105—Human Factors (4)
IE 3115—Operations Research (4)
IE 3125—Engineering Economic Analysis (3)
IE 3135—Materials Processing (4)
IE 3255—Statistical Quality Control (3)
IE 3265—Production and Operations Management (4)
IE 4145—CAD/CAM (4)
IE 4803—Simulation of Swedish Manufacturing (3)
IE 4827—Manufacturing Systems Project (8)
IE 4801—International Engineering Report (1)
IE 4823—Advanced Manufacturing Processes (4)

Required Courses From Other Programs
Chem 1151*—General Chemistry I (5)
Comp 1120*—College Writing (3)
Comp 3130—Advanced Writing: Engineering**
Comp 3150—Advanced Writing: Science (3)**
CS 1511*—Computer Science I (5)
Econ 1022*—Principles of Economics: Macro
Econ 1023*—Principles of Economics: Micro (3)
Engr 2015—Statics (3)
Engr 2016—Mechanics of Materials (3)
Engr 2026—Dynamics (3)
ECE 2006—Electrical Circuit Analysis (4)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3280—Differential Equations with Linear Algebra (4)
Phys 1201*—Mechanics (4)
Phys 1202—Heat and Electricity (4)
Stat 3611—Introduction to Probability and Statistics (4)
IntS 1070—Introduction to Scandinavia (Category 8) (3)

* Courses that may be used to fulfill UMD liberal education program requirements.
** Fulfills the advanced composition requirement.

Final Project
Students are required to complete a final team design project in the capstone design course IE 4255—Senior Design. Completion of the junior year curriculum is a prerequisite for this course. The course requires publication of a final report and a formal presentation to the project sponsors. Students taking the senior year at Luleå University of Technology must take its equivalent capstone design course.

Information Systems and Technology

Computer Science

B.S.
The B.S. in information systems and technology is a multidisciplinary program that emphasizes the study of systems development methodology and technology for our rapidly changing information society. Professionals in this area must be capable of designing and developing information systems that utilize the latest in computer technology. They must possess good communication skills, both oral and written, and also be aware of the societal and ethical implications of the systems they develop. The goal is to develop project leaders and information resource managers who can address organizational needs with technical solutions. Graduates of this program are prepared for positions in the design and development of information systems as project managers, information systems center specialists, network administrators, and database managers. This major is appropriate for students seeking a professional career in the information systems field and for those considering information systems graduate programs or MBA professional programs.

Degree Requirements
Requirements for the B.S. in information systems and technology (120 credits) include:
- Liberal education requirements
- Advanced writing requirement: Comp 3150—Advanced Writing: Science (3)

190
The computer science segment of the program consists of a core of fundamental material required of all students (13 credits). In addition, 28 credits of advanced computer science courses are required for the major.

Mathematics courses are particularly important for the study of information systems and technology. The curriculum includes 18 credits in mathematics/statistics and 6 credits in advanced FMIS courses.

A minor in business administration for non-SBE students is required.

Required Courses (41-42)

Core (13)

- CS 1511*—Computer Science I (5)
- or CS 1581*—Honors: Computer Science (5)
- CS 1521—Computer Science II (5)
- FMIS 3201—Management Information Systems (3)

Advanced Courses (28-29)

- CS 2511—Software Development (4)
- CS 3011—Information Technology and Hardware and Software (4)
- CS 3121—Interactive Multimedia Technology (4)
- CS 3211—Database System Concepts (4)
- CS 3221—Operating Systems Practicum (4)
- CS 4411—Communications and Network Technology (4)
- CS 4531—Software Engineering (4)
- or Air 3400—Project Management (3)
- CS 4993—Seminar (1)

Additional Requirements (48)

Business administration minor for non-SBE students (15)

Comm 1112*—Public Speaking (3)

Comp 1120*—College Writing (3)

Comp 3150—Advanced Writing: Science (3)

Econ 1022*—Principles of Economics: Micro (3)

Econ 1023*—Principles of Economics: Macro (3)

Math 1296*—Calculus I (5)

Math 1297—Calculus II (5)

Math 3355—Discrete Mathematics (4)

Stat 3611—Introduction to Probability and Statistics (4)

General education electives including the additional liberal education requirements (24) Electives are subject to departmental approval.

*Courses that may be used to fulfill UMD liberal education program requirements.

Minor Requirements (28-29)

- CS 1511*—Computer Science I (5)
- CS 1521—Computer Science II (5)
- CS 2511—Software Development (4)
- CS 3011—Information Technology Hardware and Software (4)
- SBE 1101—The Business Environment (3)

Choose 2 courses from the following (7-8):

- CS 3121—Interactive Multimedia Technology (4)
- CS 3211—Database Systems Concepts (4)

CS 3221—Operating Systems Practicum (4)

*Courses that may be used to fulfill UMD liberal education program requirements.

Limnology (Lim)

Department of Geological Sciences

Minor Only

Limnology is the scientific study of lakes, rivers, and wetlands. It is an interdisciplinary science encompassing the biology, chemistry, geology, and physics of these aquatic systems.

Required Courses (34-36)

- Math 1296*—Calculus I (5)
- Phys 1201*—Mechanics (4)

 and Phys 1202—Heat and Electricity (4)

 or Phys 1001*—Introduction to Physics I (5)

 and Phys 1002—Introduction to Physics II (5)

 Chem 1151*—General Chemistry I (5)

 and Chem 1152—General Chemistry II (5)

 or Chem 1161*—Honors Course: General Chemistry I (5)

 and Chem 1162—Honors Course: General Chemistry II (5)

 Lim 5001—Physical and Chemical Limnology (3)

 Lim 5002—Geological Limnology (3)

 Biol 5861—Lake Ecology (3)

 Lim 5004—Field Limnology (2)

*Courses that may be used to fulfill UMD liberal education program requirements.

Mathematics (Math and Stat)

Department of Mathematics and Statistics

Professors: Sabra S. Anderson, Joseph A. Gallian, Richard F. Green, Barry R. James, Kang L. James, Zhuangyi Liu, Ronald R. Regal, Harlan W. Stech (department head); Associate Professors: John R. Greene, Kathryn E. Lenz, Robert L. McFarland, Bruce B. Peckham, James W. Rowell, Steven A. Trogdon; Assistant Professors: Khaled Dib, Guihua Fei, Woo Jeon, Margarita Kondratieva, Carmen M. Latterell, Abraham Wender; Instructors: Dorothy W. Anway, Diana L. Colt, Karen L. Moen

Honors

To graduate with department honors, students must finish the program with an overall and department GPA of 3.50, satisfactorily complete a research project under the guidance of a
faculty member, and convey the results of their research in an oral and written presentation to the department.

B.A.—CLA

This major prepares students for careers in business, industry, and government and for graduate school.

Degree Requirements

Requirements for the B.A. in mathematics (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3130—Advanced Writing: Engineering or Comp 3150—Advanced Writing: Science (3)
- Major requirements (46-51 credits)

Required Courses

- Math 1296*—Calculus I (5)
- Math 1297—Calculus II (5)
- Math 3280—Differential Equations with Linear Algebra (4)
- Math 3299—Calculus III (4)
- Math 3299—Intermediate Analysis (3)
- Math 3941—Undergraduate Colloquium (1)
- Math 4326—Linear Algebra (3)
- Stat 3611—Introduction to Probability and Statistics (4)

One of the following options (2-3):

- Math 3097—Internship (2)
- Math 5270—Modeling with Dynamical Systems (3)
- Math 5900—Team Modeling Project (3)
- Math 5991—Independent Study (2)

Math or Stat course above 3xxx for UROP participants (2)

At least one course from each of the following groups (10-14)—students who take CS 1521 select three courses; others select four courses:

Group 1

- Math 4230—Applied Mathematics: Complex Variables (3)
- Math 4240—Applied Mathematics: Operational Methods (3)
- Math 4820—Applied Mathematics: Numerical Methods (3)

Group 2

- Math 5220—Optimization and Control (3)
- Math 5260—Dynamical Systems (3)
- Math 5280—Partial Differential Equations (3)
- Math 5810—Linear Programming (3)

Group 3

- Math 5830—Numerical Analysis: Approximation and Quadrature (4)
- Math 5840—Numerical Analysis: Systems and Optimization (4)
- Math 5850—Numerical Differential Equations (4)

Required Courses From Other Programs

- CS 1511*—Computer Science I (5)

* Courses that may be used to fulfill UMD liberal education program requirements.

Mathematics—Applied Mathematics

B.S.—CSE

This major prepares students for careers in business, industry, and government and for graduate school. A working knowledge of a programming language is required for some of the higher-level numerical courses.

Degree Requirements

Requirements for the B.S. in mathematics—applied mathematics (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3130—Advanced Writing: Engineering or Comp 3150—Advanced Writing: Science (3)
- Major requirements (51-54 credits)

Required Courses

- Math 1296*—Calculus I (5)
- Math 1297—Calculus II (5)
- Math 3280—Differential Equations with Linear Algebra (4)
- Math 3298—Calculus III (4)
- Math 3299—Intermediate Analysis (3)
- Math 3941—Undergraduate Colloquium (1)
- Math 4326—Linear Algebra (3)
- Stat 3611—Introduction to Probability and Statistics (4)

One of the following options (2-3):

- Math 3097—Internship (2)
- Math 5270—Modeling with Dynamical Systems (3)
- Math 5900—Team Modeling Project (3)
- Math 5991—Independent Study (2)

Math or Stat course above 3xxx for UROP participants (2)

At least one course from each of the following groups (10-14)—students who take CS 1521 select three courses; others select four courses:

Group 1

- Math 4230—Applied Mathematics: Complex Variables (3)
- Math 4240—Applied Mathematics: Operational Methods (3)
- Math 4820—Applied Mathematics: Numerical Methods (3)

Group 2

- Math 5220—Optimization and Control (3)
- Math 5260—Dynamical Systems (3)
- Math 5280—Partial Differential Equations (3)
- Math 5810—Linear Programming (3)

Group 3

- Math 5830—Numerical Analysis: Approximation and Quadrature (4)
- Math 5840—Numerical Analysis: Systems and Optimization (4)
- Math 5850—Numerical Differential Equations (4)

Required Courses From Other Programs

- CS 1511*—Computer Science I (5)

* One of the following (3-5):
- CS 1121*—Introduction to Programming in Visual BASIC (3)
- CS 1131*—Introduction to Programming in FORTRAN (3)
- CS 1211*—Introduction to Programming in C (3)
- CS 1521—Computer Science II (5)
- CS 2111—Introduction to Programming in C++ (3)
- CS 2121*—Introduction to Programming in Java (3)

* Courses that may be used to fulfill UMD liberal education program requirements.

Minor Requirements (21)

- Math 1296*—Calculus I
- or Math 1290*—Calculus for the Natural Sciences (5)
- Math 1297—Calculus II (5)
- Math 3280—Differential Equations with Linear Algebra (4)

Electives from the following (7):

- Math 3298—Calculus III (4)
Math 3355—Discrete Mathematics (4)
Math 4230—Applied Mathematics: Complex Variables (3)
Math 4240—Applied Mathematics: Operational Methods (3)
Math 4326—Linear Algebra (3)
Math 4820—Applied Mathematics: Numerical Methods (3)
Math 5810—Linear Programming (3)
Math 5830—Numerical Analysis: Approximation and Quadrature (4)
Math 5840—Numerical Analysis: Systems and Optimization (4)
Math 5850—Numerical Differential Equations (4)

Required Courses From Other Programs
CS 1511*—Computer Science I (5)
CS 1521—Computer Science II (5)
CS 2511—Software Development (4)

Three courses from either of the following, with at least two courses from Group 2 (11-12)—no course from Group 1 can duplicate a language covered in CS 1511—Computer Science I or CS 1521—Computer Science II:

Group 1
CS 1121*—Introduction to Programming in Visual BASIC (3)
CS 1131*—Introduction to Programming in FORTRAN (3)
CS 1211*—Introduction to Programming in C (3)
CS 2111—Introduction to Programming in C++ (3)
CS 2121*—Introduction to Programming in Java (3)

Group 2
CS 4511—Automata, Computability, and Formal Languages (4)
CS 4521—Advanced Data Structures and Algorithms (4)
CS 4531—Software Engineering (4)
CS 4611—Database Management Systems (4)
CS 4811—Systems Software (4)
CS 4821—Computer Security (4)
CS 5541—Artificial Intelligence (4)
CS 5551—User Interface Design (4)
CS 5621—Computer Architecture (4)
CS 5631—Operating Systems (4)
CS 5641—Compiler Design (4)
CS 5651—Computer Networks (4)
CS 5721—Computer Graphics (4)
CS 5731—Information and Text Processing (4)
CS 5741—Object-Oriented Design (4)
CS 5751—Machine Learning (4)

* Courses that may be used to fulfill UMD liberal education program requirements.

Mathematics—Computational Mathematics
B.S.—CSE
This major prepares students for careers in business, industry, and government and for graduate school. A working knowledge of a programming language is required for some of the higher-level numerical courses.

Degree Requirements
Requirements for the B.S. in mathematics—computational mathematics (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3130—Advanced Writing: Engineering or Comp 3150—Advanced Writing: Science (3)
- Major requirements (57-60 credits)

Required Courses
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3280—Differential Equations with Linear Algebra (4)
Math 3298—Calculus III or Math 3355—Discrete Mathematics (4)
Math 3941—Undergraduate Colloquium (1)
Math 4326—Linear Algebra (3)
Stat 3611—Introduction to Probability and Statistics (4)

Two of the following (6-8):
Math 4820—Applied Mathematics: Numerical Methods (3)
Math 5810—Linear Programming (3)
Math 5830—Numerical Analysis: Approximation and Quadrature (4)

Math 5840—Numerical Analysis: Systems and Optimization (4)
Math 5850—Numerical Differential Equations (4)

Mathematics—Double Major
B.S.—CSE
This major prepares students for careers in business, industry, and government and for graduate school.

Degree Requirements
Requirements for the B.S. in mathematics—double major (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 31xx—Advanced writing course (3)
- Major requirements (48-58 credits)

An individualized program may be designed for students who have received a degree or are working on a degree from outside the Department of Mathematics and Statistics.
Required Courses

Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3280—Differential Equations with Linear Algebra (4)

Math courses above 3280 and/or Stat courses above 3xxx (23); substitution courses from other programs must contain substantial mathematical or statistical content and be approved by the Department of Mathematics and Statistics in consultation with the participating department.

Substitution Option 1—Substitute up to 10 credits for up to 10 credits: 4xxx and/or 5xxx courses. Selected courses cannot be used for any major or minor outside the Department of Mathematics and Statistics.

Substitution Option 2—Usually substitute up to 20 credits for up to 10 credits: 4xxx and/or 5xxx courses. The substitution rate is higher because the credits apply to two majors/minors.

Math and/or Stat courses above 5xxx (8)

* Courses that may be used to fulfill UMD liberal education program requirements.

Required Courses From Other Programs

One CS course above 1010 (3)

Mathematics—Statistics and Actuarial Science

Advisers: R. Green, B. James, K. James, R. Regal

B.S.—CSE

The science of statistics is concerned with generating and analyzing data. The mathematics and statistics major trains students in theoretical, applied, and computational statistics used in a wide variety of disciplines. Advisers have information on the national actuarial examinations.

Degree Requirements

Requirements for the B.S. in mathematics—statistics and actuarial science (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3130—Advanced Writing: Engineering or Comp 3150—Advanced Writing: Science (3)
- Major requirements (48-53 credits)

Required Courses

Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3280—Differential Equations with Linear Algebra (4)
Math 3941—Undergraduate Colloquium (1)
Stat 3611—Introduction to Probability and Statistics (4)
Stat 3612—Introduction to Probability and Statistics (4)
Stat 3511—Statistical Inference (4)

* Courses that may be used to fulfill UMD liberal education program requirements.

Mathematics—Traditional Mathematics

B.S.—CSE

This major prepares students for careers in business, industry, and government and for graduate school.

Degree Requirements

Requirements for the B.S. in mathematics—traditional mathematics (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3130—Advanced Writing: Engineering or Comp 3150—Advanced Writing: Science (3)
- Major requirements (48-53 credits)

Required Courses

Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3280—Differential Equations with Linear Algebra (4)
Math 3298—Calculus III (4)
Math 3941—Undergraduate Colloquium (1)
Stat 3611—Introduction to Probability and Statistics (4)
Stat 3612—Introduction to Probability and Statistics (4)
Stat 3511—Statistical Inference (4)

One of the following (7-12):

1. Math 5201—Real Variables (4) and Math 5372—Abstract Algebra II (3)
2. Math 5201—Real Variables (4) and two 5xxx courses approved by the Department of Mathematics and Statistics (6-8)
3. Math 5372—Abstract Algebra II (3) and two 5xxx courses approved by the Department of Mathematics and Statistics (6-8)

Required Courses From Other Programs

CS 1511*—Computer Science I (5)

* Courses that may be used to fulfill UMD liberal education program requirements.
Minor Requirements (22)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Math 3280—Differential Equations with Linear Algebra (4)
or Math 4326—Linear Algebra (3)
Math and/or Stat courses above 3099, with not more than
one credit from Math 3120—Mathematics Tutorial
Project and with at least one course above 4xxx, to
bring the total to 22 credits (8-9)
* Courses that may be used to fulfill UMD liberal education
program requirements.

Physical Science

Teaching Physical Science Major (B.A.S.)
See College of Education and Human Service
Professions for program description.

Physics (Phys)
Professors: John R. Hiller (department head), Michael Sydor;
Associate Professors: Bo R. Casserberg, John L. Kroening;
Assistant Professors: Alec T. Habig, Jonathan Maps, Brian D.
May, Elise A. Ralph, Meng Zhou; Instructor: Darrin E.
Johnson

The Department of Physics offers two B.S.
degrees, which provide professional preparation
in pure and applied physics, and a liberal arts
degree (B.A.). Students participate in research,
which is focused primarily on theoretical
physics, instrumentation, experimental solid
state and high energy physics, and physical
limnology. The department also offers courses
required for such professional and pre-
professional programs as engineering and
medicine.

Honors Requirements
To graduate with honors, students must
participate in the department honors program,
complete a research project, and maintain a
GPA above 3.00. They are also expected to
attend department colloquia. Interested students
should contact the physics honors program
coordinator.

B.A.—CLA
The B.A. in physics is a liberal arts degree that
allows considerable freedom in the planning of
upper level courses and can easily be combined
with other majors and interests. The physics
courses emphasize conceptual foundations,
problem-solving skills, and experimental
techniques.

Degree Requirements
Requirements for the B.A. in physics (120
credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp
 3150—Advanced Writing: Science (3)
- Major requirements (52 credits): 32-credit
core required for all physics majors and
minors, 8 credits in mathematics in addition
to required core, 12 credits of physics and
limnology electives
- A minor or a second major in a different
program

Required Courses
Core
Phys 1201*—Mechanics (4)
Phys 1202—Heat and Electricity (4)**
Phys 1203—Magnetism, Waves, and Optics (4)**
Phys 2001—Oscillations (2)
Phys 2021—Relativity and Quantum Physics (4)
Phys 2031—Quantum Physics Laboratory (1)
Electives (12)
Phys 3061—Instrumentation (3)
Phys 4001—Classical Mechanics (4)
Phys 4011—Electromagnetic Theory (4)
Phys 4021—Quantum Physics II (4)
Phys 4031—Thermal and Statistical Physics (4)
Phys 5041—Optics (3)
Phys 5051—Computational Physics (4)
Phys 5061—Experimental Methods (3)
Phys 5062—Advanced Laboratory (2)
Phys 5531—Introduction to Solid State Physics (3)
Phys 5541—Fluid Dynamics (3)

Required Courses From Other Programs
Core
CS 1131*—Introduction to Programming in FORTRAN (3)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Additional Courses
Math 3280—Differential Equations with Linear Algebra (4)
Math 3298—Calculus III (4)
* Courses that may be used to fulfill UMD liberal education
program requirements.
** Phys 1204—Electricity, Magnetism, and Optics (5) and
Phys 1205—Waves and Heat (3) may be substituted for the
pair Phys 1202 and Phys 1203.
Electives
May be used toward 12 credits in electives:
Lim 5001—Physical and Chemical Limnology (3)

Minor Requirements
This minor program (35 credits) provides an
introduction to classical and quantum physics.
Core (32)
CS 1131*—Introduction to Programming in FORTRAN (3)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)
Phys 1201*—Mechanics (4)
Phys 1202—Heat and Electricity (4)**
Colleges and Schools

Phys 1203—Magnetism, Waves, and Optics (4)**
Phys 2001—Oscillations (2)
Phys 2021—Relativity and Quantum Physics (4)
Phys 2031—Quantum Physics Laboratory (1)

Additional Courses

Phys electives at 3xxx or above (3)
* Courses that may be used to fulfill UMD liberal education program requirements.

** Phys 1204—Electricity, Magnetism, and Optics (5) and
Phys 1205—Waves and Heat (3), may be substituted for the pair Phys 1202 and 1203.

B.S.

The B.S. in physics is primarily for students planning to work toward an advanced degree in physics or a related area. The physics courses emphasize conceptual foundations, problem-solving skills, and experimental techniques.

Degree Requirements

Requirements for the B.S. in physics (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3150—Advanced Writing: Science (3)
- Major requirements (68 credits): 32-credit core required for all physics majors and minors; 12 credits in mathematics and chemistry in addition to required core; 24 credits in advanced physics courses in the fundamental areas of mechanics, quantum physics, electromagnetism, statistical physics, and experimental methods; two semesters (1 credit each) of a seminar course to train students for oral presentation of work in physics
- A minor or a second major in a different program

Required Courses

Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 1201*—Mechanics (4)</td>
<td></td>
</tr>
<tr>
<td>Phys 1202—Heat and Electricity (4)**</td>
<td></td>
</tr>
<tr>
<td>Phys 1203—Magnetism, Waves, and Optics (4)**</td>
<td></td>
</tr>
<tr>
<td>Phys 2001—Oscillations (2)</td>
<td></td>
</tr>
<tr>
<td>Phys 2021—Relativity and Quantum Physics (4)</td>
<td></td>
</tr>
<tr>
<td>Phys 2031—Quantum Physics Laboratory (1)</td>
<td></td>
</tr>
</tbody>
</table>

** Additional Courses (24)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 3061—Instrumentation (3)</td>
<td></td>
</tr>
<tr>
<td>Phys 4001—Classical Mechanics (4)</td>
<td></td>
</tr>
<tr>
<td>Phys 4011—Electromagnetic Theory (4)</td>
<td></td>
</tr>
<tr>
<td>Phys 4021—Quantum Physics II (4)</td>
<td></td>
</tr>
<tr>
<td>Phys 4031—Thermal and Statistical Physics (4)</td>
<td></td>
</tr>
</tbody>
</table>

Phys 5061—Experimental Methods (3)
Phys 5090—Physics Seminar (1)
Course must be repeated for a total of 2 cr.

Required Courses From Other Programs

Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1131*—Introduction to Programming in FORTRAN (3)</td>
<td></td>
</tr>
<tr>
<td>Math 1296*—Calculus I (5)</td>
<td></td>
</tr>
<tr>
<td>Math 1297—Calculus II (5)</td>
<td></td>
</tr>
</tbody>
</table>

Additional Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 2172*—General Chemistry (4)</td>
<td></td>
</tr>
<tr>
<td>Math 3280—Differential Equations with Linear Algebra (4)</td>
<td></td>
</tr>
<tr>
<td>Math 3298—Calculus III (4)</td>
<td></td>
</tr>
</tbody>
</table>

* Courses that may be used to fulfill UMD liberal education program requirements.

Final Project

No final projects, internships, or seminars are required, except as part of Phys 5090—Physics Seminar.

Minor Requirements

This minor program (35 credits) provides an introduction to classical and quantum physics.

Core (32)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1131*—Introduction to Programming in FORTRAN (3)</td>
<td></td>
</tr>
<tr>
<td>Math 1296*—Calculus I (5)</td>
<td></td>
</tr>
<tr>
<td>Math 1297—Calculus II (5)</td>
<td></td>
</tr>
<tr>
<td>Math 1201*—Mechanics (4)</td>
<td></td>
</tr>
<tr>
<td>Phys 1202—Heat and Electricity (4)**</td>
<td></td>
</tr>
<tr>
<td>Phys 1203—Magnetism, Waves, and Optics (4)**</td>
<td></td>
</tr>
<tr>
<td>Phys 2001—Oscillations (2)</td>
<td></td>
</tr>
<tr>
<td>Phys 2021—Relativity and Quantum Physics (4)</td>
<td></td>
</tr>
<tr>
<td>Phys 2031—Quantum Physics Laboratory (1)</td>
<td></td>
</tr>
</tbody>
</table>

Additional Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys electives at 3xxx or above (3)</td>
<td></td>
</tr>
</tbody>
</table>

* Courses that may be used to fulfill UMD liberal education program requirements.

** Phys 1204—Electricity, Magnetism, and Optics (5) and
Phys 1205—Waves and Heat (3), may be substituted for the pair Phys 1202 and 1203.

Applied Physics

B.S.

The B.S. in applied physics is primarily for students planning to work in industry. The physics courses emphasize conceptual foundations, problem-solving skills, and experimental and computational techniques.

Degree Requirements

The requirements for the B.S. in applied physics (120 credits) include:

- Liberal education requirements
- Advanced writing requirement: Comp 3150—Advanced Writing: Science (3)
- Major requirements (76 credits): 32-credit core required for all physics majors and
minors; 15 credits in chemistry, computer science, and mathematics in addition to required core; 10 credits in computational and experimental methods; 17 credits in electives chosen from advanced physics courses and courses in other technical areas, such as limnology and engineering; two semesters (1 credit each) of a seminar to train students in oral presentation of work in physics • A minor or a second major in a different program

** Required Courses **

Core

Phys 1201*—Mechanics (4)
Phys 1202—Heat and Electricity (4)**
Phys 1203—Magnetism, Waves, and Optics (4)**
Phys 2001—Oscillations (2)
Phys 2021—Relativity and Quantum Physics (4)
Phys 2031—Quantum Physics Laboratory (1)
** Phys 1204—Electricity, Magnetism, and Optics (5) and Phys 1205—Waves and Heat (3) may be substituted for the pair Phys 1202 and Phys 1203.

Additional Courses (12)

Phys 3061—Instrumentation (3)
Phys 5051—Computational Physics (4)
Phys 5061—Experimental Methods (3)
Phys 5090—Physics Seminar (1) Course must be repeated for a total of 2 cr.

Electives (8)

Phys 4001—Classical Mechanics (4)
Phys 4011—Electromagnetic Theory (4)
Phys 4021—Quantum Physics II (4)
Phys 4031—Thermal and Statistical Physics (4)

Technical Electives (9)

Phys 5041—Optics (3)
Phys 5062—Advanced Laboratory (2)
Phys 5531—Introduction to Solid State Physics (3)
Phys 5541—Fluid Dynamics (3)

** Required Courses From Other Programs **

Core

CS 1131*—Introduction to Programming in FORTRAN (3)
Math 1296*—Calculus I (5)
Math 1297—Calculus II (5)

Additional Courses

Chem 2172*—General Chemistry (4)
CS 1211*—Introduction to Programming in C (3)
Math 3280—Differential Equations with Linear Algebra (4)
Math 3298—Calculus III (4)

* Courses that may be used to fulfill UMD liberal education program requirements.

** Electives **

May be used toward 9 credits in technical electives:
An approved set of engineering courses
Lim 5001—Physical and Chemical Limnology (3)

** Final Project **

No final projects, internships, or seminars required, except as part of Phys 5090—Physics Seminar.

** Minor Requirements **

An applied physics minor is not available, but see the B.S. and B.A. degrees for a description of the physics minor.

** Statistics (Math and Stat) **

Department of Mathematics and Statistics

Advisers: R. Green, B. James, K. James, R. Regal

The science of statistics is concerned with generating and analyzing data. The mathematics and statistics major trains students in theoretical, applied, and computational statistics used in a variety of disciplines. See Mathematics for a description of the mathematics—statistics and actuarial science B.S. major.